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ABSTRACT

Motivation: In the context of clinical bioinformatics methods are nee-
ded for assessing the additional predictive value of microarray data
compared to simple clinical parameters alone. Such methods should
also provide an optimal prediction rule making use of all potentialities
of both types of data: they should ideally be able to catch subty-
pes which are not identified by clinical parameters alone. Moreover,
they should address the question of the additional predictive value of
microarray data in a fair framework.

Results: We propose a novel but simple two-step approach based on
random forests and PLS dimension reduction embedding the idea of
pre-validation suggested by Tibshirani and colleagues which is based
on an internal cross-validation for avoiding overfitting. Our approach
is fast, flexible and can be used both for assessing the overall additio-
nal significance of the microarray data and for building optimal hybrid
classification rules. Its efficiency is demonstrated through simulations
and an application to breast cancer and colorectal cancer data.
Availability: Our method is implemented in the freely available R
package 'MAclinical’ which can be downloaded from
http://www.stat.uni-muenchen.de/~socher/MAclinical.

Contact: boulesteix@slcmsr.org

1 INTRODUCTION

usually also explore the molecular mechanisms underlying the con-
sidered disease by focusing their attention on the most informative
genes.

In the context of outcome prediction, some groups of researchers
suggest that gene expression data could be used in clinical prac-
tice to provide improved diagnosis or prediction (see, e.g. van't
Veer et al., 2002). In this case, it is crucial to assess the additional
predictive value of gene expression data compared to the available
(good) simple clinical predictors. Since they are in general much
more difficult and expensive to collect than clinical predictors, gene
expression predictors should be used as prediction tools only when
they really lead to an accuracy improvement. A problem related
to the additional predictive value is outlined by Ntzani and loan-
nidis (2003) who state thaadjustment for other classic predictors
of the disease outcome [is] essentiarhis is especially true when
the study’s aim is to demonstrate the practical benefit of using gene
expression predictors in clinical practice, but also in other cases. For
instance, suppose that the age and sex distributions are not the same
in the two groups that have to be distinguished. If these variables are
ignored when performing classification, one may misleadingly con-
clude that microarray data can separate the two groups very well,
whereas the differences in gene expression are in fact due to sex and
age differences.

Although taking clinical variables into account may be crucial in
the context of microarray-based prediction, this aspect is often either
omitted or performed using sub-optimal methods and not adequa-

For the last few years, microarray-based outcome prediction, espeely described in the medical literature. Hundreds of novel methods

cially classification, has attracted much attention in the statisticshave been proposed to deal with the ‘smallargep’ problem, but
bioinformatics and medical communities. While cancer researclyery few statisticians address the question of the additional predic-
is probably the most important field of application of microarray- tive value of microarray data. We give an overview at the end of this
based prediction, classifiers have also been proposed for othegction.

diseases such as multiple sclerosis (Bomprezzi et al., 2003). Classi- Such clinical parameters may include, e.g. age and sex of the pati-
fication studies using microarray data only often aim to demonstratent, disease duration, relapse rate or tumor grade, depending on the
that microarray data are informative to distinguish different types ofinvestigated disease. A critical study of breast cancer outcome pre-
tissues or patients, e.g., normal from cancer tissues or respondedfction (Eden et al., 2004) suggests thgbod old’ clinical markers
from non-responders. As a by-product of such a study, researchergve similar power in breast cancer prognosis as microarray [...]
profilers’ and, more generally, microarray data are suspected to
sometimes yielthoise discovery({loannidis, 2005). In another con-
text, Hunter et al. (2008) point out thaétting the genome out of
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the bottle’may have perverse effects in the context of genetic tests. A related problem is the construction of complex classifiers com-
Similar results have been obtained in the field of multiple sclero-bining clinical parameters and high dimensional microarray data.
sis and magnetic resonance imaging (MRI). MRI, which has longldeally, such a classifier would

been considered as an efficient tool for disease course prediction,

turns out to show only marginal additional predictive value when 1. show at least as good performance as simpler classifiers using
it is used in combination with simple clinical parameters including, only clinical parameters or only microarray data, respectively,

e.g., relapse history and disease duration (Daumer etal.,, 2006). 2 nandle different configurations (bad microarray and good clini-

In the present paper, we focus on a standard binary classifica-  ¢a| predictors, good microarray and bad clinical predictors) by
tion problem: the response variaifeto be predicted can take two performing correct model selection,

valuesY = 0 orY = 1. The term prediction refers to the prediction
of the respons&”. For exampleY may stand for the development
of metastases within a given period of time (yes/no). Note that not
all prediction problems can be easily simplified in terms of binary 4. handle both categorical and continuous predictors, since many
prediction without substantial loss of information and precision.  clinical parameters are categorical,
However, class prediction remains the most commonly encounte- 5, decide automatically whether to include microarray data or not,
red prediction problem in high-dimensional settings. Our methodis  depending on their additional predictive value.
easily generalizable to other prediction problems including survival
analysis and multicategorical responses. In the literature, some articles address the question of the additional
The answer to the question of the additional predictive value ofpredictive value of microarray data, whereas others propose com-
microarray data is typically binary: ‘yes, microarray data improve bined classifiers without answering this question. Here is a brief
the classification accuracy yielded by clinical predictors’ or ‘clini- review.
cal predictors perform at least as well as gene expression predictorsOn the one hand, Tibshirani and Efron (2002) suggest the
-and are much less expensive’. The second answer may correspogd-called ‘pre-validation’ (PV) testing framework whose aim is
to different situations. Firstly, it is possible that microarray data areto determine whether microarray data contribute significantly to
not relevant at all for the prediction problem, in which case a usuathe prediction problem, given that clinical parameters are already
classifier for high dimensional data gives poor results when appliedvailable. The idea is to summarize microarray data in form of
to microarray data alone. The second scenario is that microarraghe internally cross-validated predicted probability of class mem-
data are relevant for the prediction problem, but redundant with obership, thus avoiding that microarray data are artificially favored.
weaker than clinical parameters, in which case a usual classifier foThis approach is applied, e.g., in a breast cancer study by Pawitan
high dimensional data yields satisfying results. Note that the terngt al. (2005). Note that the aim of this method is not to construct an
‘redundant’ does not imply any causality relationship. Microarray optimal classifier combining both types of data.
data and clinical data may be redundant because the gene expressioin the other hand, several authors try to involve clinical para-
influences clinical variables or vice versa, or because both clinicaieters in the classifier construction in some way. Dettling and
and microarray variables are influenced by common latent unobBiihimann (2004) suggest a statistical approach based on penalized
served mechanisms. Additional biological knowledge is needed tdogistic regression handling all types of clinical variables. Gevaert
answer this question, which goes beyond the scope of this article. et al. (2006) follow an approach based on Bayesian networks invol-
In practical studies, the additional predictive value of microar-ving two steps (structure step and learning step). A related approach
ray data is often assessed by usingzaanethods. The most simple is presented by Sun et al. (2007). It is also based on variable selec-
one is probably subgroup analysis. If one is interested in the pretion, although using a completely different selection procedure. The
dictive value given that a binary predictor is already available, themethod by Sun et al. (2007) relies on a wrapper feature selec-
separate analysis of both subgroups is a natural approach. Consid#n method called I-RELIEF. They use linear discriminant analysis
ring the small sample sizes in microarray studies and the numbgiLDA) as a class prediction method, which can be an inconvenience
of available candidate clinical predictors (typically about 5 to 10),in the presence of categorical predictors.
this approach can not be recommended in general. Another simple Some of these studies do not appear to use any systematic vali-
approach consists of building a classifier based on all predictorsiation strategy and hence have the pitfalls outlined by Dupuy and
without distinguishing between microarray and clinical variables.Simon (2007), which make their results uninterpretable. Moreover,
This method seems also inappropriate to answer the question of thRost of them do not provide any adequate answer to the related
additional predictive value: even if we have an excellent clinicalquestion of the additional predictive value of microarray data from
predictor, it is likely to get lost within the huge amount of microar- a testing point of view because it was not their primary goal. For
ray variables. Hence, this approach does not treat clinical predictorgistance, with methods putting microarray and clinical data together,
fairly. The third intuitive approach consists of building two classi- the latter tend to get lost within the huge amount of microarray
fiers: one based on clinical parameters, one based on microarrariables and are thus not treated fairly from the point of view of
data. The problem is then that the original question of the additionaihe additional predictive value. Methods treating the two groups of
predictive value cannot be answered at all. If both classifiers performpariables separately and combining them at the end may also fail
similarly, one does not know whether microarray data do exactly thepartly in the frequent case where clinical and microarray data are
same as clinical parameters or rather allow to refine the prediction inighly correlated.
some way. Hence, the assessment of the additional predictive valuen this article, we present a method which simultaneously i) deter-
of microarray data is not a trivial issue. mines whether microarray data have additional predictive value and

3. neither over-summarize microarray data nor favor them in the
final classifier through overfitting mechanisms,
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ii) provides a combined classifier fulfilling the five points enu- components are used as predictors in ordinary least squares regression, hence
merated above. To the best of our knowledge, there is no othehe term ‘PLS regression’. When the response is binary, the linear regression
approach treating these two aspects in a common framework. In gtep can of course not be carried out. However, it can be shown (Barker
very recent article, Binder and Schumacher (2008) address the§@d Rayens, 2003) that, if applied to a categorical response, the dimension
problems based on a penalized Cox regression approach using Cortﬁ_ductlon step is strongly relgted to prmqpal comppnent analysis performed
ponentwise boosting techniques. However, they only address t r-h the. bem?en'gm”p.coya”ahce matrix. Hence, it makes sense to perform
L . . S LS dimension reduction in this setting.

prediction of survival times. I_t_ls s_tlll unclear Wh_etht_ar su_ch mthods PLS dimension reduction construdtsmutually orthogonal components
would perform well for classification problems in high dimensional 4 |inear combinations at:
settings, which may be more affected by separation and overfitting
problems.

According to several independent comparison studies (Man et alWhereT is then x k matrix of new components = (t1;, ..., tn;) ", for
2004: Boulesteix, 2004; Dai et al., 2006), PLS-based methodé = 1k andW ap x k matrix of weights satisfying particular opti-
range among the best dimension reduction methods for highr_nallty criteria. These criteria differ slightly depending on the considered

di . | and noi . data in th text of dicti PLS variant. One of the most widely used PLS variant is SIMPLS (de Jong,
Imensional and noiSy microarray data in the context ot predic IOn1993), in whichW is constructed such that the squared sample covariance

See Nguyen and Rocke (2002) for the first application of PLS t0,eqyeery and the latent components is maximal under the constraint that the

microarray-based prediction and Boulesteix and Strimmer (2007}gjumnswy, ..., wy, of W are of unit length and the new componetitsare

for an overview of PLS methods for genomic data. mutually orthogonal. In mathematical terms the extraction of the subsequent
In this article, we suggest a new approach combining PLS dimeneomponents can be written as

sion reduction and the principle of pre-validation introduced by

Tibshirani and Efron (2002). Random forests (Breiman, 2001) are

then applied with both the new components and the clinical variasubject tow] w; = 1 andtt; = w]X"Xw; = 0. The fast extraction

bles as predictors. Our proposal contains several novelties: i) thef the weight matrixW can be carried out using a sequential algorithm

two-step approach involving a dimension reduction step and givenin, e.g., Martens_ and Naes (1989). By deflnm_on,the most informative

classification step for handling the two types of variables, ii) thecomponents are the first ones, but the determination of the best number of

tensi f th lidation idea to di . ducti d;omponents is a difficult task. Some authors (Boulesteix, 2004; Dai et al.,
extension of he pre-validation idea 1o dimension reduction an 006) use cross-validation based strategies. In this article, we use the imple-

prediction, iii) the combination of PLS and random forests which yentation of SIMPLS included in the R package 'plsgenomics’ (Boulesteix,

involves several advantages, and iv) a model choice procedure basego4; Boulesteix and Strimmer, 2007), function ‘pls.regression’.

on the out-of-bag error estimator. The proposed method is described Although variable selection is not always necessary as a preliminary step

in Section 2 and illustrated in Section 3 through simulations and ano PLS-based classification, some authors argue that it can substantially

application to the breast cancer data by van't Veer et al. (2002) antinprove accuracy in the high-dimensional setting (Dai et al., 2006), espe-

the colorectal data by Lin et al. (2007). cially when there are indeed few relevant variables. Many variable selection
procedures are available in the literature. One of the most widely used is uni-
variate filtering based on the absolute value of the t-statistic. In the present
paper, we stick to this standard approach.

2 METHODS Random forests are introduced by Breiman (2001) and based on the deci-

. o ~sion tree methodology. In only seven years, they have grown to a major
Let X denote thex x p m_atrlx con_talnlng the column-centered expression data analysis tool, especially in the context of high-dimensional genetic
values ofp genes fom patients, whiley denotes the centered vector of clas- or genomic data (Strobl et al., 2007). Like bagging (Breiman, 1996), the

Ses clt?Qedlas 0,1 Slmllarlzhseno_tes thes x g matrix %lvmg the values_ method is based on the aggregation of classification or regression trees built
of ¢ clinical parameters for the patients. In contrast to the gene expression using bootstrap samples drawn out of the originaibservations, in order

matrix X’,Z may include categorical variables, such as tumor grade or SeX, maye tree-based prediction more robust. In order to make the obtained
of the patient. . ) . ) ) trees even more different and thus increase their stability and to reduce the
In the_prese‘nt sectlon,_we firstgive a short overview (,)f pgrtlal least Squareéomputation time, random forests have an additional feature. At each split,
(PLS) dimension reduction and random forest classification. In the second g 1hset of candidate predictors is selected out of the available predictors.
subsection, we propose a novel method combining PLS dimension reducnophe sizemtry of the subset, which is a method parameter, is often set to
with the idea of pre-validation suggested by Tibshirani and Efron (2002)'mtry = /P, wherep i the total number of predictors.
We then outline the whole procedure consisting of summarizing microarray As a model-free approach, the random forest method does not need any
data in form of pre-validated PLS components and applying random forestgic.ip tional assumptions and can be applied to any type of data. In par-
to both microarray and clinical variables and address the problem of mOdedcular, it behaves well with high-dimensional correlated data, see, e.g.,
choice, especially the choice of the number of PLS components.

T = XW,

W; = arg max Cov?(Xw,y) = arg mvz\}x(yTXW)2 1)

Diaz-Uriarte and de Andrs (2006) for an application to microarray-based

. . class prediction. Random forests can also take interactions between varia-
2.1 Anintroduction to PLS and random forests bles into account explicitly. Lastly, they are faster than other aggregation
Partial Least Squares (PLS) methods were developed in connection witmethods like bagging, since they do not consider all the available predictors
path models in the 60s and 70s (Wold, 1966). Statisticians became interext each split.

sted in its application to robust and computationally efficient regression for Like classification and regression trees, random forests handle all types
data with small sample sizes and large number of highly correlated variaef responses, in particular multicategorical or censored responses. They also
bles some 25 years ago (Martens and Naes, 1989; Stone and Brooks, 199@rk with all types of predictor variables. However, when predictors do not
Garthwaite, 1994). The following introduction refers to the review by Bou- have the same scale, selection bias may occur using the standard random
lesteix and Strimmer (2007). PLS regression consists of two steps. Durinfprest algorithm. It is then recommended to use an alternative version of the
the dimension reduction step, the predictors from maXiare summarized random forest method based on conditional inference (Hothorn et al., 2006)
in form of a small number of linear combinations called ‘PLS components’.implemented in the function 'cforest’ of the R package 'party’. Moreover, it
Subsequently, assuming that the response is continuous, these extracted Rtzh be shown (Strobl et al., 2007) that subsampling (without replacement) is
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preferable to the bootstrap when drawing samples out ofitbleservations

The matrix Xy, is assumed to have columns with zero mean Znd

at each random forest iteration. In this paper, we follow these recommento be centered by substraction of the columns’ means obtained Xgm
dations. The only parameters for which we do not use the default settingas usual in PLS-based prediction (Boulesteix and Strimmer, 2007)k Let
are i) the number of trees, which is set to 200 instead of 500 for compudenote the maximum allowed number of PLS components, typigaty 3
tational reasons, ii) the number of candidate predictors at each split, whicin the binary case. The detailed procedure is as follows.

we set to,/p for consistency with the original R package 'randomForest’

implementing the method by Breiman (2001), iii) the threshold defining the 1.

stopping criterion (see Hothorn et al. (2006) for more details), which we set
to mincriterion=0 in order to obtain trees with long branches, as com-
monly recommended for trees used in random forests. In very small data sets
(say,n < 30), one should also modify the parametaginsplit ~ controlling

the minimal size of nodes to be split. However, our experience shows that
this modification is not necessary in data sets of usual size as those conside-
red here. Note that, in contrast to other methods such as penalized logistic
regression, the performance of random forests depends only slightly on the
choice of parameters and that different settings would yield similar results.

2.2 Pre-validated PLS

Suppose that we construct PLS components as described in Section 2.1,
based on a given learning data set. Per definition, these components are likely
to be strongly related to the response variable, especially in the case of high
dimensional data. Comparing their predictive power to the power of clinical
variables in the learning data set would be an unwise strategy: Because of
overfitting, there typically will be a bias in favor of the PLS components.

In the present article, we suggest to overcome this problem by extending
the pre-validation principle of Tibshirani and Efron (2002) to PLS dimension
reduction. Pre-validation is inspired from the well-known cross-validation
procedure for evaluation of prediction rules, which consists of partitioning
the available sample into distinct subsamples and successively considering
each subsample as test data and the remaining subsamples as training data.
Unfamiliar readers may refer to the review by Boulesteix et al. (2008) on this
subject. Our novel procedure works as follows.

1. Divide the learning data set intG@ groups. Here, we se¥ = 10, as
recommended by éfling and Tibshirani (2008).

2. Leave one group out and run PLS dimension reduction on the remaining
G — 1 groups.

3. Compute the PLS components for the left-out group using the derived
weight matrix. We denote these PLS componentsrasvalidated PLS
components

4. Repeat steps 2-3 for each of thegroups.

2.

Cross-validated PLS dimension reduction with learning data set
Construct then;, x k matrix of pre-validated PLS componeriiy;,
as follows. Forg = 1,...,G:

la. Carry out variable selection based m(L‘g) and y(L_g) only,
where the superscrip{—g)’ indicates that the observations from
the g-th group have been removed froXi;, andyy, respec-
tively. This yields an expression matr)f(z(_g) with p* columns,
wherep* is the pre-fixed number of selected variables. Gké
group is not taken into account in the variable selection process,
because variable selection must be considered as a part of the clas-
sifier construction, see, e.g., Dupuy and Simon (2007); Boulesteix
(2007).

Run the PLS dimension reduction procedure withomponents

on the data matri)X*L(_g). This yields thep* x k weight matrix
w9,

Build the £ components for the excludegth group as the pro-
ductXZ(g)W(L*g), Wherexz@) denotes the part of the matrix
X, corresponding to the-th group and containing only the*
variables selected in 1a. Store the prom(g)w({g) in the
rows of T';, corresponding to thg-th group.

1b.

1c.

Classifier construction Construct a random forest using the columns
of the matricedI';, andZ, as predictors angt;, as response.

. PLS dimension reduction with the test data setCarry out variable

selection based oK ;, andy, only, yielding agairp* selected varia-
bles. For the reduced test data maiXi}. consisting of the* selected
variables, compute the matriR7 of PLS components as follows.

3a. Run the PLS dimension reduction procedure withomponents
on the whole learning data matX; of sizeny x p*, yielding
thep* x k weight matrixW .

3b. Build the PLS components for the test data seFas= X7 W ..

4. Prediction Apply the random forest constructed in step 2 to the predic-

The pre-validated components can then be fairly compared to other variables.

2.3 Summary: Recipe of the analysis

tion of the test observations using theAmatriEIéﬁ andZr. For each
test observation one obtains a predictiorior the class membership.

In the present article, we suggest to combine PLS dimension reduction with This procedure is summarized as a flow chart in Figure 1.

the random forest methodology in order to take both gene expression and

clinical parameters into account when constructing a classifier. Suppose th?t 4 Model choice and additive predictive value of

we have a learning data sktof sizeny, (corresponding t&X, Zr, yr)
for which we know the response variable. We also have a test dafaafet
sizent (corresponding t&X, Zr), for which a prediction has to be made.

microarray data

In this section, we show how the out-of-bag (OOB) error estimator (Breiman,

In clinical practice, the test data set would be a set of patients that hav@001) yielded as a by-product when growing a random forest can be used
to be predicted. In the context of the validation of research findings, the tedboth for the choice of the number of PLS components and for answering the
data set would be a set of patients for which we also know the responsguestion of the additive predictive value of microarray data.
variable, and that are used to assess the prediction accuracy of the combi-The OOB error estimator works as follows. When growing each tree of
ned classifier constructed using the learning data. Note that this scheme flse random forest36.8% of then observations are put aside and not used

possible only if we have a large enough data set. Otherwise, one may use &or choosing the splits (this default setting of the functaborest

, which

evaluation scheme based on, e.g., cross-validation, repeated subsamplisgems from bootstrap sampling). These observations are aaltedf-bag

or bootstrap sampling, see Boulesteix et al. (2008) for an overview. In thisobservations. After all the trees are constructed, a pseudo-prediction can be
case, the algorithm is run several times. For example, if leave-one-out crossaade for each of the observations using only the trees that did not use it
validation (LOOCV) is used to assess our combined classifier, one wouldor training, i.e. the trees for which it was an out-of-bag observation. The
run the following algorithm for each LOOCYV iteration, where the data set OOB error rate is then computed by comparison ofrthseudo-predictions

X consists of only one observation at each iteration.

with the true classes. Note that, in contrast to in-bag error estimation, this
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3 RESULTS AND DISCUSSION
Learning data X, Y, The analyzes described below can be reproduced using the scripts
l available from http://www.stat.uni-muenchendsbcher/MAclinical.

3
Pre-validate (PV) variable selection Box 1 . .
PLS dimension reduction + 3.1 Simulations
variable selection (i.e. -
it Box 1 for X, =X, ¥ * i * . . . . .
a0 e ), 1..G XixT The aim of this simulation study is to compare the performance

|

PLS / of our approach to related approaches based on clinical and/or
Vt microarray variables. Several data structures are considered: diffe-
L components as Xt*W,

: rent predictive powers for the microarray variables, different powers
oy l et for the clinical variables, and different class structures. By diffe-
N /L' ' Tr rent class structures, we mean that we examine two settings: i) a
\ ‘redundant’ setting where the microarray and clinical variables are
. N generated using exactly the same model, thus discriminating the
Random forest *' (rediction. classes in the same way and giving ‘redundant’ information, and ii)
a ‘non-redundant’ setting, where observations from class 1 are
assumed to form two distinct subgroups: one of the subgroups can
be discriminated from the other one and frdfm= 0 by microarray
data, whereas the second one is discriminated by clinical variables.
Fig. 1. Schematic representation of the classification methods based on prd-he corresponding data generating processes are detailed below.
validated dimension reduction and random forests, using both microarray In the first setting (redundant setting), the random variables
predictors X, for the learning set an&X for the test set) and clinical ~ x ... ,X,andZi, ..., Z, have the following joint distribution.

predictors Z;, for the learning set andr for the test set). Predictor data The binary respons¥ follows a binomial distribution withP(Y =
sets are represented in ellipses, actions are represented in boxes, outputla}s: 0.5. A total of p* < p microarray variables are relevant for

simple text. class prediction. Each microarray variabtg (j = 1,...,p) is
generated as

Xj=px; Y +ej, &)
procedure overcomes overfitting problems, since the predicted observatior@nd each clinical variablg, (s =1,...,q) as
were not used for training the corresponding predicting trees. The OOB error
estimator can be used for comparing the prediction accuracy of several ran- Zs =z, Y+ fs, ?3)
dom forests. An interesting application in the present context is the choice of
the number of components, and, if zero is considered as a possible candidatthere ux; (j = 1,...,p) anduz, (s = 1,...,q) are con-

for the number of components, the question of the additive predictive valugtant parameters controlling the amount of predicting power of the
of n_1icroarray data. To dq _this, we _suggest to replace step 2 of the procedurl‘“nicroarray and clinical variables, respectively, and the teems
outlined above by a modified version 2* as follows. (G =1,...,p)andfs (s = 1,...,q) are independent random errors
following a standard normal distribution.

In the present simulation, we et to the same valugz, = uz
for all clinical variables and consider different valueg.of succes-

2*. Classifier construction

e Forl =0,...,k, construct arandom forest using thirst columns of -
the matrixT';, and the matrixZ ;, as predictors angt;, as response. sively: iz =0 (no. DC_’WEY)MZ = 1 (moderate power) andz = Z’
e Compute the OOB error for each of thet- 1 constructed forests. (strong power). Slm"arlyuff Is set to the constanty for the.p.
o ) genesXy,..., Xp~ (with p* < p) and to zero for the remaining
e Select the number of componems yielding the forest with the genesX,«41,...,X,. Similarly to uz, the parametepx takes

smallest OOB error. different values successively.x = 0,0.5, 1. In the present study,

The number is then replaced bg* in the following step of the procedure the total number of *genes IS setjio— 100.0 and the. numbgp
(Step 3: ‘PLS dimension reduction with the test data set’). Note that thisOf relevant genes tp* = 50_‘ W_e ‘_’e”?te this S'm‘%'a“‘?” setting as
procedure is much faster than cross-validation for the choice of the numbgle_dundant, becal%s_e the d.ISCI’ImInatIOI’] mechanism is the same for
of components, since the OOB estimator is a by-product of the random foredplicroarray and clinical variables.
algorithm. In the rest of this article, this method is denoted as PLS+RF. For all parameter combinatiorg.x , z), we drawny andnr

If k* = 0, we conclude that microarray data do not have any predic-i.i.d. observations forming the learning set and test set, respectively.
tive value compared to clinical variables aloneklf > 0, it is possible  Here,ny is setton;, = 50, nr is settonr = 450 in order to obtain
to roughly evaluate the significance of microarray data by computing configccurate estimates of the error rate. A totalNgf... = 100 data sets

dence intervals for the calculated OOB errors, where the sample size is givefre simulated for each parameter setting. The optimal number of
as the size of the training set. This procedure does not yield a rigorous statbLS components is selected frdm= 0, 1,2, 3

stical testz since |n_depenc_jence ofthe obseryatlons is not warrantt_ed. However, We compare the pre-validated PLS+RF method based on both
the resulting confidence intervals should give the order of magnitude of the

corresponding differences in accuracy. microarray and clinical variables ('pls-pv+rf/xz’, wittD-fold PV)

The whole procedure is implemented in the R package "MAclinical’. The 0 Simpler related approaches, in order to determine the effect of
current version that was used for this paper is available from pre-validation and to answer the question whether the combined
http://www.stat.uni-muenchen.desocher/MAclinical. We plan to send a classifiers perform as well as classifiers based on microarray data
refined version of this package to the Comprehensive R Archive Network. only or clinical variables only. The considered approaches are i)
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PLS+RF based on both microarray and clinical variables without

pre-validation (‘pls+rf/xz’), ii) pre-validated PLS+RF based on Method pz ux =0 px =0.5 px =1
microarray data only with0-fold PV (‘pls-pv-+rf/x’), iii) PLS+RF pls-pv+rfixz 0 0.50+0.02  0.33+£0.07 0.04+£0.03
based on microarray data only without pre-validation (‘pls+rfix’), Ppls+rf/xz 0 0.50+0.01 0.48 £0.04 0.44£0.07
and iv) RF based on clinical variables only (rf/z’). As an additional pls-pv+rfix 0 0.50 4 0.02 0.29 +£0.06" 0.03 £ 0.02*
comparison, we also apply standard approaches used when dealingls+rf/x 0 0.50+0.01 0.48 £0.04 0.44+£0.07
with only one type of predictors: logistic regression for clinical pre- svm/x 0 0.50£0.02 0.30£0.05 0.05+0.03
dictors (log/z’) and the Support Vector Machines (SVM) method rf/z 0 0.50+0.02 - —

for microarray data ('svm/x’), which is well-established as one of log/z 0 0.50+0.02 - —

the most accurate procedures in thi_s sgtting (Statnikov et al., 2005)-p|s-pv+rf/xz 1 0221004 019+ 004 0.03X002°
We use the R package 'e1071’, with linear kernel and cost set to pls+rfixz 1 0.4340.08 0.4240.09 0.39+ 0.10
the default value 1. In order to make clear that we do not ‘tune’~ ¢ 1 022+004 — —

our method_ artificially (Whlc_h would ylelq an unfair compar_lsor_w), log/z 1 0.17 +0.03* — _

let us mention that we additionally applied the two pre-validation - -
approaches (pls-pv+rfixz’ and 'pls-pv+rfix’) with leave-one-out PISPV+ri/xz 3 0.01+£0.01  0.01£0.01" 0.01+0.01
pre-validation instead of0-fold pre-validation (data not shown). _Pis*rfixz 3 0.05+0.05  0.05+0.05 0.05+0.04
However, the results were not different from those obtained With rf/z 3 0.01£0.02 - -

fold pre-validation. Hence, we stick tt-fold, following Hofling log/z 3 0.003+£0.00" — -

and Tibshirani (2008).

For each iteration, a classifier is built based on the learning datdable 1. Redundant setting Mean error rate and standard deviation (over
set only, with the seven methods outlined above successively. ThEPO simulation runs) for the seven class prediction methods: "pls-pv+rf/xz’,
classifiers are then evaluated based on the corresponding test set aig*7/XZ': PIS-pv+rilx, "pls+rifx', ‘svm/x', 'rf/z', ‘log/z with different
the error rate is estimated as the mean proportion of misclassifie wers for the microarray varlab_leg;é = 0,0.5,1) and clinical varia-

. L . L es wz = 0,1, 3). The symbof* indicates the best performance for each
observations. In this simulation, we do not perform any prellmmarysetting. Gray figures correspond to random predictors not correlated to the

variable selection, as suggested by Boulesteix (2004, 2006) in thgasg respons& . Summary: Our method is at least as good as the other
case of relatively large signal to noise ratios. In real data analysisapproaches in almost all settings.

one could of course try to improve classification accuracy by preli-
minary variable selection. This step was omitted in the simulation
for computational reasons. Similarly, correlations between genes
and/or clinical variables do not seem to affect the results noticeably

ux =0 pux =05 pux=1

(data not shown). o  puz=0 OOBE=0 0.50 0.50 0.50

As can be seen from Table 1, pre-validation improves classifi- OOBk =1 0.50 0.32 0.04
cation accuracy noticeably, especially when clinical parameters are %Ek* >0 65 96 100
good predictors (i.e., fopz = 1 or uz = 3). Since PLS com- uz=1 O00Bk=0 023 0.23 0.23
ponents without pre-validation usually overfit the training data, they OOBL = 1 0.23 0.19 0.04
are artificially preferred to clinical parameters in the split selection %k >0 67 ég 1.00

procedure. Moreover, trees are then likely to have longer irrele-

=3 OOBk=0 0.01 0.01 0.01

vant branches. The performance of the 'pls-pv+rf/xz’ approach is Hz _
. ) ) OOBk=1 0.01 0.01 0.01
slightly lower than the performance of 'pls-pv+rf/x’ in the case of %E* >0 36 40 48

non-predictive clinical variables, but as good as the 'rf/z’ approach

in all cases, even when microarray data are not predictive. Thgapie 2. Novel PLS-PV+RF method Mean OOB error over the 100

comparison to the standard logistic regression and to SVMs revealgmulations runs with: = 0 andk = 1 PLS component and percentage

interesting features. In Table 1, logistic regression with clinical para-of simulation runs yieldinge* > 0 (i.e. where prediction accuracy with

meters performs better than the 'pls-pv+rf/xz’ approach only whenmicroarray data was better than without microarray data).

clinical parameters are more predictive than microarray data. Except

for the caseux = 0, uz = 1 (0.165 £ 0.03 vs0.216 + 0.03), this

difference is minimal. Note that in this case, random forests with

clinical variables only do not perform better than ’pls-pv+rf/xz’. component is selected (i.&* > 0), for the novel 'pls-pv+rf/ixz’

The difference between random forests and logistic regression camethod. As can be seen from Table 2, the proportion of simulation

be explained by the linear structure of our simulated data: foruns withk* > 0 selected PLS components increases drastically

this simulation setting the flexibility of random forests is not an with px, but this increase also depends pp. For a fixedux,

advantage, in contrast to the non-redundant setting sketched belothe proportion of runs witlk* > 0 is much lower with informative

SVMs perform approximately as well as 'pls-pv+rf’ in the case of clinical variables (z = 1,3) than with non-informative clinical

non-informative clinical variables, but worse in all other cases. variables. This can be explained as follows: if clinical variables per-
As an illustration of the model selection scheme proposed in Secorm well, it is more difficult for microarray data to yield accuracy

tion 2.4 and its ability to assess the additional predictive value oimprovement.

microarray data, we also compute i) the mean OOB error over the The simulation design outlined above corresponds to the case

100 subsampling runs obtained with = 0 andk™ = 1 PLS com-  where both microarray and clinical variables discriminate the two

ponent, and ii) the percentage of runs for which at least one PL®esponse classes in the same way, for instance because both of them
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3.2 Application to breast cancer data

Method pz_px =0 px =05 _ px =1 This widely-used benchmark data set gives the expression levels of
pls-pvtriixz 0 0.50 + Q'(]Z 0.48+0.03" 039 40.08 22483 genes for 78 breast cancer patients, of which 34 have poor
pls-+rifxz 0 050+001 0494001 0494 0'02* prognosis and 44 have good prognosis (van't Veer et al., 2002). It
pls-pv+rf/x 0 0.50+0.02 0.48+0.04  0.35+0.06 can be downloaded from the article webpage. The data set prepa-
pls+rf/x 0 (7]'5“ + ”'(u 0.49+£0.01  0.49+0.02 red as described in the original manuscript (only genes that show
svm/x 0 050+£002 046+0.03 0.37+0.04 2-fold differential expression and p-value for a gene being expres-
rfiz 0 050£0.02 - - sed< 0.01 in more than 5 samples are retained, yielding 4348
log/z 0 050+£002 - - genes) is included in the R package 'DENMARKLAB’ (Fridlyand
pls-pv+rfixz 1 0.39+0.04 0.38+0.04* 0.30+0.07" and Yang, 2004), which we use in the article. The available clinical
pls+rf/xz 1 0.49+0.03 0.49+0.03 0.48+0.03 variables are age (metric), tumor grade (ordinal), estrogen recep-
rfiz 1 0.39+£0.04 — — tor status (binary), progesterone receptor status (binary), tumor size
log/z 1 0.37 £0.04* — — (metric) and angioinvasion (binary).

pIs-pv+iixz 3 029 £ 0.0 0291004 019=L0.07 The classific_ation accuracy i_s evgluated l_Jsing the common repea-
pls+rfixz 3 0484+ 0.04 048 +0.04 047 =+ 0.05 ted subsampling method which is a vgrlant of crloss-valldatlon
iz 3 030£004 = — also denoted aMt_)nte-CarIo-cross-vaI|dat|qnsee _Mollnaro et al.
log/z 3 0324004 — B (2005); Boulesteix et al. (2008) for more details. In a nutshell,

instead of splitting the original data set consisting of 78 observa-
Table 3. N dundant setting M te and standard deviati tions into, say, 5, 10 on subsets (like in standard cross-validation),
able s. mon-redundant setiing Viean error rate and standard deviation ., repeatedly split it into a learning set and a test set according to

(over 100 simulation runs) for the seven class prediction methods: 'pls- A . L .
puHTXZ, "pls+ixz’, "pls-pu+iix, "pls+ix’, 'svmix’, iz, ‘loglz’ with the ratio 4:1. Variable selection is carried out based on the abso-

different powers for the microarray variablgsy — 0,0.5, 1) and clinical  lute value of the t-statistic, using the learning set only as commonly
variables (1 = 0,1,3). The symbol* indicates the best performance for recommended (Boulesteix, 2007; Dupuy and Simon, 2007). The
each setting. Gray figures correspond to random predictors not correlated fethod described in Section 2.3 is then applied to the learning and
the class responsé. Summary: Our method is at least as good as the othettest sets including the step for the optimization of the number of
approaches in all settings. components as described in Section 2.4. The error rates are estima-
ted as the proportion of misclassified test observations. The whole
procedure is repeatetD0 times and the error rates are averaged.
This approach usually leads to more stable results than standard
cross-validation, because it is based on a larger number of itera-
are influenced by the same underlying mechanism. They give essefigns, Table 4 gives the obtained mean error rates with the seven
tially redundant information. In practice, investigators often hopemethods described in Section 3.1, for different numbers of variables
that microarray data give additional (i.e. non-redundant) informasp, the range of the number of genes used in the original signature
tion, for instance, by correctly predicting a particular group that isproposed by van't Veer et al. (2002).
difficult to predict with clinical predictors only. In the rest of this |t can be seen from Table 4 that microarray data do not noticea-
section, a variant of the above simulation design is applied to inve,my improve the prediction accuracy yielded by clinical parameters
stigate the behavior of the different methods in an ideal extreme casQone, which corroborates the findings of Eden et al. (2004). This
where clinical and microarray predictors are perfectly complemenyegy|t is confirmed by considering the mean OOB error rates obtai-
tary. The observations with’ = 1 are assumed to come from tWo e with the different numbers of components. For each of the 100
underlying classesa and1b. The microarray variables are drawn jterations, we estimate the 95%-confidence interval for the diffe-
to separatéda from the rest, whereas the clinical variables separatggnce of the OOB misclassification rates obtained Witk 0 and
1b from the rest. The underlying model is the same as in Eq. (2) ang. — 1 respectively. The sample size is 62 for both rates, since each
(3), except that” is replaced by the binary variablg8® andY'” |eaming set containg.8 x 78 ~ 62 observations. Fop* = 100,
defined a&"(®) = 1if ¥ = 1a and 0 otherwise, antf > = 1if  he |ower bound of the obtained confidence interval exceeds zero
Y = 1band 0 otherwise, respectively. for only 9% of the 100 iterations, which suggests that the microar-

In this non-redundant setting, the two-step 'pls-pv+rf/xz’ y3y data do not contribute significantly to the prediction. Similar
approach performs almost uniformly better than all other methodg,oncjusions are obtained with = 20, 100, 200.

(see Table 3). This is not surprising, since the simulation setting can

be seen as an extreme case where the combination of two types of

predictors using tree-based methodologies is expected to work well. o

However, this case is very important in the context of the additionaS-3 Application to colorectal cancer data

predictive value. Indeed, by additional predictive value, one oftenThis Affymetrix data set described by Lin et al. (2007) gives the
implicitly means that microarray data can predict disease subtypesxpression levels of 16041 genes for 29 good outcome patients
which are wrongly classified by clinical parameters. Note that theand 26 poor outcome patients with colorectal cancer. In addition
overall performance of all methods decreases dramatically compde microarray data, the two variables sex and age are available. The
red to the redundant setting. This is because each observation data are prepared as described in Lin et al. (2007). Gene expression
discriminated by both clinical and microarray variables in the red-data are expected to have better predictive power than the variables
undant setting, but by only one of the two types of variables (eitheisex and age which typically yield relatively poor prediction accuracy
clinical or microarray) in the non-redundant setting. in the case of cancer.
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Method p* = 20 p" =50 p =100 p =200 p° 20 50 100 200
pls-pv+riixz 0.30 £ 0.11 0.31 +0.11 0.30 £0.12 0.31 £0.11 k=0 0.30 030 030  0.30
pls+rfixz  0.304+0.11 0.30+£0.11 0.31£0.10 0.35+0.12 k=1 0.30 030 030  0.30
pls-pv+rfix 041 £0.12 0.42+0.12 043 £0.11 0.43 +0.12 breast k=2 029 029 030  0.30
pls-+rfix 0.35+£0.11 0.364+0.11 0.37+£0.10 0.39 +0.11 k=3 0.30 030 030  0.30
svm/x 0.40£0.10 0.40+0.10 0.40+0.10 0.40 4 0.10 Yk >0 67 70 64 64
e 099 011 — — — k=0 056 0.56  0.56  0.56
log/z 0.30 - 0.10 B B B k=1 043 040 038  0.38
Colorectal k=2 0.39 0.37 0.34 0.35
i - k=3 041 039 035  0.36
Table 4. Mean classification error rate and standard deviation fobthast %k > 0 90 94 95 95

cancerdata. The error rate is estimated by 100 subsampling iterations with
splitting ratio 4:1.

Table 6. Novel PLS-PV+RF method Mean OOB error over the 100
subsampling runs witlk = 0,1, 2,3 PLS component angdercentage of
simulation runs yielding k* > 0 (i.e. where prediction accuracy with
microarray data was better than without microarray data).

Method p" =20 p* =50 p* =100 p* =200
pls-pv+rf/lxz 0.41 £0.15 0.40+0.16 0.35+0.15 0.36 +0.16
pls+rf/xz 0.334+0.13 0.3240.13 0.31+0.12 0.30+0.14 CONCLUSION

pls-pv+rf/x  0.37+0.14 0.36+0.15 0.33+£0.13 0.33 £0.130e have presented a simple two-step approach based on well-
pls+rfix 0.32+0.13 0.334+0.12 0.32+0.13 0.31 & 0.14stablished data analysis tools (PLS and random forests) combined

svm/x 0.374+0.13 0.374+0.13 0.37+0.13 0.37 =+ 0.13with the pre-validation principle by Tibshirani and Efron (2002).
rflz 0.56 +0.15 - - —  This procedure can simultaneously determine whether microarray
log/z 0.57+0.13 — — —  data have additional predictive value and provide a combined clas-

sifier fulfilling the six points enumerated above. Our fast, simple
Table 5. Mean classification error rate and standard deviation foctie- and flexible method is implemented in the R package 'MAclinical’.
rectal cancerdata. The error rate is estimated by 100 subsampling iterationdts ability to yield efficient hybrid prediction rules in various set-
with splitting ratio 4:1. tings (good/bad microarray/clinical predictors) was demonstrated in
both simulations and real data analysis. In particular, our approach
does not seem to overestimate the predictive value of microarray
data and yields good prediction accuracies when microarray and
clinical parameters do not give redundant predictive information.
Let us further mention that as far as computation time is concer-
The analysis design is the same as for the van’'t Veer data. Ased our novel method is similar to SVM, i.e. very fast. In their
can be seen from the results given in Table 5, the microarray datstudy of pre-validation, Hfling and Tibshirani (2008) point out
now have predictive power whereas the two variables age and sesubstantial biases occurring when pre-validated predicted probabi-
do not. Unsurprisingly, involving the uninformative variables age lities are tested for significance in linear regression. In our study,
and sex (methods 'pls-pv+rf/xz’ and 'pls+rf/xz’) slightly decreases the OOB error slightly decreased with the number of included pre-
the prediction accuracy compared to the methods without clinicalalidated PLS components in the non-informative case, but this
variables 'pls-pv+rf/x’ and ’pls+rf/x’, but the performance of the trend was minimal. This potential slight bias in model selection,
approach 'pls-pv+rf/xz’ remains comparable to the performance ofvhich is probably due to the mechanism outlined byflhg and
the standard good performing SVM method. Hence, our approachibshirani (2008) (roughly speaking, observations are not indepen-
shows overall good performance in very different situations. dent anymore in cross-validation), should be addressed in future
As an illustration of the model selection scheme embedded in theesearch.
PLS-PV+RF method, we show i) the mean OOB error over the 100 Note that the OOB error used in this article for the choice of the
subsampling runs obtained with each number of PLS componentsiumber of PLS components can also be used for the choice of the
and ii) the percentage of runs for which at least one PLS componentumber of genes, similarly to the procedure for the choice of the
is selectedX™ > 0), as in the simulation study. As can be seen from number of PLS components. This problem is ignored by many aut-
Table 6, our method correctly selects at least one PLS componetiiors, who compare the different number of genes post-hoc, i.e. after
in most runs & 90%) for the colorectal data, i.e. much more often completing the evaluation procedure. Tuning the number of genes
than for the van't Veer data. This result is in agreement with themay lead to optimistic bias, not only in the context considered in
mean OOB obtained with each number of components. Whereas thhis article.
mean OOB does not depend on the number of PLS components for The extension of our method to other prediction problems (regres-
the van't Veer data@O B = 0.30 for allp* and allk), it decreases sion, survival analysis, multicategorical classification) is straightfor-
substantially betweeh = 0 andk = 1 for the colorectal data, with  ward. Unlike other common approaches such as logistic regression,
a further slight decrease frolm= 1to k = 2. iti) does not require any distributional assumption or a specific type
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of relationship (e.g., linearity) between the response and the pre- expression profilers. European Journal of Cancer 40, 1837-1841.
dictors, ii) does not need any limitation of the number of clinical Fridlyand, J., Yang, J. Y. H., 2004. DENMARKLAB R package. Advan-
variables, which is useful in the case of small samples, i) can cope ced microarray data analysis: Class discovery and class prediction,

ith dcl in thi h R f bui http://genome.cbs.dtu.dk/courses/norfa2004/Extras/IDENMARKLAB.zip.
with separated classes (in this respect, the aggregation of trees built, \waite. P. H.. 1994. An interpretation of partial least squares. Journal of the

on perturbed data sets is an advantage), and iv) can handle inter- American Statistical Association 89, 122-127.
actions, for instance interactions between microarray and clinicaGevaert, O., de Smet, F., Timmermann, D., Moreau, Y., de Moor, B., 2006. Predic-

predictors, thus potentially identifying subtypes that are not caught ting the prognosis of breast cancer by integrating clinical and microarray data with
- bayesian networks. Bioinformatics 22, e184—190.
by clinical data alone. '
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