SUMMARY OF DAY 5 Clinical and Genetic Epidemiology Winter School (February 10, 2017)

Christina Strauß & Katharina Schremser

Großhadern, February 17, 2017

Part 1: Personalized Medicine and Study Designs

Friday 10. Feb 2017

Time	Topic Responsible	
9:15 - 10:45	Personalized Medicine and Study Designs Prof. Strauch	
11:15 - 12:45	Personalized Medicine and Study Designs	Prof. Strauch
14:15 - 15:45	Health economics and ethics Dr. Schwarzkopf	
16:15 - 17:45	Health economics and ethics Dr. Schwarzkopf	

Genetic Epidemiology - general idea

- Identification of gene(s) causing a disease NOT all genes involved in it
- Look for genetic regions DIFFERING between affected and unaffected patients
- Important:

- > Mode Of Inheritance
- > Penetrance

Genetic Linkage

getting away from the idea that you inherit the identical chromosome you inherited from your father or your mother

- Linkage: describes events of chromosomal recombination in a <u>family</u>
- Linkage Disequilibrium: describes events of chromosomal recombination in a population - > tagging SNP

Study design and type of Analyses

- Linkage Analysis vs. Association Analysis
- Population-based vs. Cohort
- Case/Control vs Family (Trio)

How rare is the disease / the genetic variant you are examining How is your budget?

-> trend goes back to family design (sequencing of loci to get rare variants)

Biomarkers

- DIANOSTIC Who is sick?
- RISK Who is in risk of becoming sick?
- PROGNOSTIC If the person is sick, how will the course of disease be?

PREDICTING THE OUTCOME – the ultimate aim

Biomarkers

Retrospective identification and prospective validation

- <u>Prognostic</u> biomarkers: associated with outcome independent of treatment
- <u>Predictive</u> biomarkers: predict efficacy of a certain treatment for a disease

Biomarkers

Randomization designs for Phase III trials have low statistical power

when Biomarker is reliable: targeted trial design to reduce patient number

Part 2: Health economics and ethics

Friday 10. Feb 2017

Time	Topic Responsible	
9:15 - 10:45	Personalized Medicine and Study Designs Prof. Strauch	
11:15 - 12:45	Personalized Medicine and Study Designs Prof. Str	
14:15 - 15:45	Health economics and ethics Dr. Schwarzkopf	
16:15 - 17:45	Health economics and ethics Dr. Schwarzkopf	

Types of health economic studies

Basic approaches of health economic evaluation Costs A **Consequences A Program A** Decision **Program B Consequences B** Costs B Cost Minimization Analysis Zaltrap vs. Avastin \rightarrow only costs count in mCR **Cost-Effectiveness** Erlotinib vs Gefitinib in Analysis FGFR M+ NSCI C \rightarrow Effects in physical units **Cost-Utility Analysis CRC/HH** screening → Multidimensional Case study outcome parameter (QALY)

Steps of health economic evaluation

Factors enhancing the cost-effectiveness of personalized medicine

	Factor	Requirement
Gene	Prevalence	Variant allele common
	Penetrance	 High gene penetrance
Test	Diagnostic accuracy	 High sensitivity, high specificity
	Cost	 Fast, cheap, broad availability
Disease	Prevalence	Widespread disease
	Natural Course	 High mortality in case of no treatment
		 Substantial decrement on quality of life
Treatment/		 Targeted application by responders only
Comparator		 Less side effects
		 Enhanced prognosis
		 Small costs differences compared to standard

→ the lower the ICER, the higher the probability of being cost-effective

It's all about the increments...

Combination of both (cost and effect) parameters in a single outcome e.g. incremental cost effectiveness ratio (ICER)

 \rightarrow no willingness-to-pay threshold in Germany

Potentially relevant aspects for decision making

 \rightarrow different princeples ranging from liberalism (US) over priotarianism to utilitarianism (e.g. QALY maximisation)