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Multiple tests

Many variables have to be tested simultaneously, for instance:

• Association of 100,000 SNPs with disease status (healthy vs. Parkinson)

• Association between 20,000 gene expression levels and survival time in
leukemia patients

• . . .

These variables that have to be tested are from now on denoted as
V1, . . . , Vm.
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Multiple tests: example

Question: Test whether the means of the variables V1, . . . , Vm are different
in groups “bad” and “good”.

Tested null-hypotheses:

H
(j)
0 : µ

(j)
1 = µ

(j)
2 ,

where µ
(j)
1 resp. µ

(j)
2 stands for the mean of variable j in group 1 resp. 2.

Test: Two-sample t-test

Significance level α is set to 0.05 (usual choice).

Multiple testing 3



Testing

Univariate analyses:
Test whether the means of V1, . . . , V1000 are different in groups “bad” and
“good”.

Naive approach: Perform a t-test at the level 0.05 for each variable, i.e.
reject the null-hypothesis of equality of the means for all variables having a
p-value < 0.05.
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Multiple testing

Naive approach: Perform a t-test at the level 0.05 for each variable, i.e.
reject the null-hypothesis of equality of the means for all variables having a
p-value < 0.05.

Problem: A p-value of 0.05 means that the probability to observe this value
of the test statistic or a more extreme value is 0.05.

0.05 = 5% is low, but not zero!
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0.05 = 5% is low, but not zero!

Frequentist vs. Bayesian
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Multiple testing

• 0.05 = 5% is low, but not zero!

• If we consider 1000 tests and assume that all null-hypotheses are true (i.e.
should not be rejected), the null-hypothesis will (wrongly) be rejected
for 5%× 1000=50 variables!

→ The naive approach yields 50 false positives in this case and gives the
impression that there are “interesting variables” in the data although it
is not the case.
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Type I error

• If we test at the level α = 0.05 a single hypothesis that is true, the
probability that it will be (wrongly) rejected by our test is α = 0.05. This
is called the type I error.

• If we test at the level α = 0.05 several hypotheses that are true, the
probability that at least one of them will be (wrongly) rejected by our
test is larger than α = 0.05.
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Testing only one hypothesis

fail to reject H0 reject H0

H0 true 1− α α
H0 false β 1− β

α: Type I error = Probability to reject H0 given that it is true

β: Type II error = Probability to fail to reject H0 given that it is false

1− β: Power = Probability to reject H0 given that it is false

Multiple testing 9



Testing m hypotheses simultaneously

fail to reject H0 reject H0 Total
H0 true . . . V m0

H0 false . . . . . . m−m0

Total m−R R m

m0 = Number of true hypotheses

R = Number of rejected hypotheses

V = Number of false positives
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Type I error and FWER

• The probability P (V ≥ 1) that at least one true hypothesis will be
wrongly rejected by our test can be seen as a generalization of the
concept of type I error to the case of multiple testing.

• It is called the Family-Wise-Error-Rate (FWER).

• The purpose of classical adjustment procedures is to control the FWER,
i.e. to ensure that it is not larger than a fixed level α.
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The FWER with the naive approach: a simple example

• Let us consider two null-hypotheses H
(1)
0 and H

(2)
0 that are independent

of each other.

• Let us further suppose that the two null-hypotheses H
(1)
0 and H

(2)
0 are

true.

• We apply the naive approach, i.e. we do both tests at the level α.

• Then the FWER (probability that at least one of the hypotheses is
wrongly rejected) is

1− (1− α)2 = 1− 1 + 2α− α2 = 0.0975 for α = 0.05.
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The FWER with the naive approach: a simple example

Then the FWER (probability that at least one of the hypotheses is wrongly
rejected) is

1− (1− α)2 = 1− 1 + 2α− α2 = 0.0975 for α = 0.05.

This is much more than α = 0.05!

We want to apply multiple testing procedures to make the FWER smaller
than α = 0.05.
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Controlling the FWER

• We have to be “more strict”, i.e. to reject less hypotheses in order
to control the FWER.

• “Being more strict” means:

– considering a threshold α∗ smaller than α = 0.05,
– or equivalently: transforming the p-value p (that is compared to α)

into a larger adjusted p-value p∗.

• There are several possible ways to do that, i.e. several adjustment
procedures for multiple testing.
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Multiple testing terminology

• controlling the type I error

• correcting p-values, correcting for multiple testing, correction proce-
dure

• adjusting p-values, adjusting for multiple testing, adjustment proce-
dure
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Bonferroni procedure

• Consider the larger threshold α∗ = α/m

• or equivalently transform the p-value p into p∗ = min(p×m, 1)

It can be shown mathematically that by doing that we control the FWER,
i.e. we have

FWER < α.
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Bonferroni procedure: example

• We test 3 null-hypotheses and obtain the p-values 0.023 (for H
(1)
0 ),

0.784 (for H
(2)
0 ) and 0.004 (for H

(3)
0 ), respectively.

• With the naive approach, we would reject H
(1)
0 and H

(3)
0 .

• With Bonferroni adjustment the threshold is α∗ = 0.05/3 ≈ 0.017

instead of 0.05, and we reject only H
(3)
0 .

• Equivalently, we can transform the p-values into 0.023 × 3 = 0.069, 1

and 0.004 × 3 = 0.012 and we also immediately see that only H
(3)
0 is

rejected.
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Bonferroni is conservative

• Problem of Bonferroni procedure: It is too conservative, i.e. it “con-
serves” (accepts) null-hypotheses too often.

• This leads to a poor power, i.e. some hypotheses that are false are not
rejected although they should be rejected.

• Improvement: Holm procedure
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The Holm procedure

• Order the p-values p1, . . . , pm from the smallest to the largest:

p(1) < · · · < p(m).

• Compare p(k) to the threshold α∗ = α
m+1−k (that is smaller than α).

• If k0 denotes the smallest k for which p(k) > α∗, reject the hypotheses
corresponding to the smaller p-values p(1), . . . , p(k0−1).

• If we never have p(k) > α∗, reject all null-hypotheses.
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The Holm procedure: same example

• We test 3 null-hypotheses and obtain the p-values 0.023 (for H
(1)
0 ),

0.784 (for H
(2)
0 ) and 0.004 (for H

(3)
0 ), respectively.

• With Bonferroni adjustment, we would reject only H
(3)
0 .

• With Holm:

– We order the p-values: 0.004 < 0.023 < 0.784.

– H
(3)
0 (with p = 0.004) is rejected because 0.004<0.05/3.

– H
(1)
0 (with p = 0.023) is rejected because 0.023<0.05/2.

– H
(2)
0 (with p = 0.784) is not rejected.
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Holm vs. Bonferroni

• Holm also controls the FWER, i.e. after adjustment with Holm’s proce-
dure we have FWER< α.

• But it has more power, i.e. when a null-hypothesis is false, it is more
likely to be rejected by Holm than by Bonferroni.

→ Holm should be preferred to Bonferroni.

• But Holm is more complicated. In some cases, it is more practical to
consider Bonferroni adjustment, e.g. for computing a sample size.

Multiple testing 21



Sample size and adjustment
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Inconvenience of FWER in high-dimensional settings

• Suppose that we test as many as m = 1000 hypotheses simultaneously.

• The FWER (probability that at least one null-hypothesis is wrongly
rejected) is not very relevant: one false positive out of 1000 tests would
not be so dramatic.

• The proportion of false positives within the rejected hypotheses is a
more relevant feature.
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False Discovery Rate (FDR): example

• Example: We test 1000 hypotheses and reject 65 of them. 55 of these
rejected hypotheses are truly false, but 10 are not false and should
actually not have been rejected.

• The proportion of false positives among the rejected hypotheses is
10/65 = 15.4%.

• This is called false discovery rate.
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FDR: formal definition

• Let Q be zero if no null-hypotheses are rejected.

• Let Q denote the proportion of false positives within the rejected null-hypotheses if at

least one null-hypothesis is rejected.

• Then the FDR is defined as the mean of Q: FDR = E(Q).

To put it simply: when many hypotheses are tested, it is unlikely that none
of them is rejected. Hence the FDR can roughly be thought of just as the
proportion of false positives within the rejected null-hypotheses.
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Controlling the FDR

• One might want to rather control the FDR instead of the FWER.

• This makes sense in the case of many null-hypotheses (large m).

• Just as the FWER can be seen as a generalization of the type I error
to the case of multiple testing, the FDR can be seen as an alternative
generalization.
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Benjamini-Hochberg procedure

• Benjamini and Hochberg (JRSS B, 1995) suggested a procedure to
control the FDR, i.e. to ensure that FDR<0.05.

• It can be applied when at least a few hundreds of hypotheses are tested.

• It controls the FDR only if the hypotheses are independent (unrealistic
assumption) and in some special cases of dependence.
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Benjamini-Hochberg procedure

• Order the p-values p1, . . . , pm from the smallest to the largest:

p(1) < · · · < p(m).

• Compare p(k) to the threshold α∗ = α·k
m (that is smaller than α).

• If k0 denotes the largest k for which p(k) ≤ α∗, reject the hypotheses
corresponding to the smaller p-values p(1), . . . , p(k0).

• If we never have p(k) ≤ α∗, reject nothing.
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Benjamini-Hochberg procedure: remarks

• The Benjamini-Hochberg procedure is less conservative than the Bonfer-
roni or Holm procedures, i.e. it rejects more null-hypotheses.

• However, if all null-hypotheses are true, FDR=FWER. So do not expect
too much from Benjamini-Hochberg if (almost) all null-hypotheses are
true.

• But it sometimes happens that BH rejects null-hypotheses although
Bonferroni does not: even if p(1) > α/m, we might have p(k) < αk/m
for some larger k.
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Multiple testing with R: example

The ALL data set:

• publicly available from Bioconductor platform

• n = 128 patients with ALL leukemia

• ≈ 20 demographical and clinical variables (sex, age, date of diagnosis,
remission, etc)

• expression levels of m = 12625 genes measured using Affymetrix mi-
croarrays
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Multiple testing with R: example

> library(ALL)

> data(ALL)

> Y<-pData(ALL)$BT

> Y<-as.numeric(is.element(Y,c("B","B1","B2","B3","B4")))

> Y

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[112] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

> X<-t(exprs(ALL))

> X[1:4,1:7]

1000_at 1001_at 1002_f_at 1003_s_at 1004_at 1005_at 1006_at

01005 7.597323 5.046194 3.900466 5.903856 5.925260 8.570990 3.656143

01010 7.479445 4.932537 4.208155 6.169024 5.912780 10.428299 3.853979

03002 7.567593 4.799294 3.886169 5.860459 5.893209 9.616713 3.646808

04006 7.384684 4.922627 4.206798 6.116890 6.170245 9.937155 3.874289

> pval<- apply(X, MARGIN=2, FUN=function(x,y) t.test(x[y==0],x[y==1])$p.value,y=Y)

> sort(pval)[1:6]

37988_at 39389_at 38242_at 41609_at 36773_f_at 38319_at

3.552271e-44 1.424983e-43 5.499754e-42 7.098067e-41 2.003368e-39 1.484983e-38
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Multiple testing with R: example (ctd.)

> p.adjust(sort(pval),method="bonferroni")[1:6]

37988_at 39389_at 38242_at 41609_at 36773_f_at 38319_at

4.484742e-40 1.799041e-39 6.943440e-38 8.961309e-37 2.529252e-35 1.874791e-34

> p.adjust(sort(pval),method="holm")[1:6]

37988_at 39389_at 38242_at 41609_at 36773_f_at 38319_at

4.484742e-40 1.798899e-39 6.942340e-38 8.959180e-37 2.528450e-35 1.874049e-34

> p.adjust(sort(pval),method="BH")[1:6]

37988_at 39389_at 38242_at 41609_at 36773_f_at 38319_at

4.484742e-40 8.995207e-40 2.314480e-38 2.240327e-37 5.058503e-36 3.124652e-35

Multiple testing 32



Another example

> Y<-pData(ALL)$relapse

> pval<- apply(X, MARGIN=2, FUN=function(x,y) t.test(x[y=="TRUE"],x[y=="FALSE"])$p.value,y=Y)

> sort(pval)[1:6]

36912_at 37458_at 1584_at 41222_at 36041_at 37238_s_at

8.687728e-05 9.966280e-05 1.600307e-04 1.797820e-04 2.632425e-04 3.146477e-04

> p.adjust(sort(pval),method="bonferroni")[1:6]

36912_at 37458_at 1584_at 41222_at 36041_at 37238_s_at

1 1 1 1 1 1

> p.adjust(sort(pval),method="holm")[1:6]

36912_at 37458_at 1584_at 41222_at 36041_at 37238_s_at

1 1 1 1 1 1

> p.adjust(sort(pval),method="BH")[1:6]

36912_at 37458_at 1584_at 41222_at 36041_at 37238_s_at

0.5674368 0.5674368 0.5674368 0.5674368 0.6620711 0.6620711
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Conclusion

• Do not ignore multiple testing issues.

• Adjust p-values when looking at statistical significance in univariate
analyses.

• Consider using an FDR-based adjustment method like the Benjamini-
Hochberg procedure when testing many hypotheses simultaneously.
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