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Abstract | Biomarkers and surrogate end points have great potential for use in clinical oncology, but their 
statistical validation presents major challenges, and few biomarkers have been robustly confirmed. Provisional 
supportive data for prognostic biomarkers, which predict the likely outcome independently of treatment, is 
possible through small retrospective studies, but it has proved more difficult to achieve robust multi-site 
validation. Predictive biomarkers, which predict the likely response of patients to specific treatments, require 
more extensive data for validation, specifically large randomized clinical trials and meta-analysis. Surrogate 
end points are even more challenging to validate, and require data demonstrating both that the surrogate is 
prognostic for the true end point independently of treatment, and that the effect of treatment on the surrogate 
reliably predicts its effect on the true end point. In this Review, we discuss the nature of prognostic and 
predictive biomarkers and surrogate end points, and examine the statistical techniques and designs required 
for their validation. In cases where the statistical requirements for validation cannot be rigorously achieved, 
the biological plausibility of an end point or surrogate might support its adoption. No consensus yet exists on 
processes or standards for pragmatic evaluation and adoption of biomarkers and surrogate end points in the 
absence of robust statistical validation.
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Introduction 
Biomarkers and surrogate end points have an increasingly 
important role in both cancer research and clinical prac-
tice. Biomarkers can be used to assess prognosis and to 
predict how individual patients will respond to specific 
treatments, whereas surrogate end points potentially enable 
the effectiveness of new interventions to be assessed more 
rapidly, and at times with greater accuracy, than classic 
end points (such as survival) in clinical trials. However, 
the challenges that must be overcome in the adoption of 
biomarkers and surrogate end points are numerous,1 and 
range from discovery, verification and assay qualification 
through to statistical validation, successful use in clinical 
trials and, ultimately, routine use in the clinic. Here, we 
focus on one of the most demanding stages in this process, 
the challenge of statistical validation.

Definitions
The definitions of biomarkers and end points used in this 
Review are summarized in Table 1. According to the defi-
ni tion adopted by the Biomarkers Definitions Working 
Group,2 a biomarker is defined as “a characteristic that 
is objectively measured and evaluated as an indicator of 
normal biological processes, pathogenic processes, or 

pharmacologic responses to a thera peutic intervention”. 
Within this broad category, we focus our discussion on 
biomarkers that forecast future states, namely prog nostic 
and predictive biomarkers, as opposed to pharmaco-
kinetic or pharmacodynamic biomarkers that are used in 
early drug development. Prognostic biomarkers predict 
the likely course of disease, irrespective of treatment; 
for instance, lymph-node involvement predicts a poor 
outcome in the manage ment of solid tumors, even though 
treatment can prolong survival of patients with or without 
evidence of nodal involvement. By contrast, predictive 
biomarkers forecast the likely response to treatment; for 
example, hormone receptor status predicts response to 
endocrine therapies in breast cancer. Furthermore, some 
bio markers, such as hormone receptor status in breast 
cancer, are both prognostic and predictive.

Biomarkers can be contrasted with clinical end points, 
which capture information on how patients would feel, 
function or survive.3 Surrogate end points, which might 
themselves be based upon a biomarker, aim at replac-
ing a clinical end point with a faster and more-sensitive 
evaluation of the effect of experimental treatments. In this 
Review, we discuss the challenges of achieving statistical 
validation for prognostic and predictive biomarkers, and 
finally surrogate end points.

The term ‘validation’ can itself be confusing and has 
been subjected to different usages within the literature; 
there is a need for greater standardization in the nomen-
clature for all the stages of biomarker discovery and adop-
tion.4 Some authors and regulatory authorities have used 
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the term ‘qualification’ for the process of establishing the 
credibility of a biomarker or surrogate end point.5–7 The 
terms ‘validation’ and ‘qualification’ have also both been 
applied to the process of confirming the effectiveness of 
a biomarker assay.1,6 For the purposes of the present dis-
cussion, however, we will ignore these important aspects 
of assay validation, and refer to a validated biomarker 
as one that has been demonstrated by robust statistical 
methods to be associated with a given clinical end point 
(prognostic biomarkers), to predict the effect of a therapy 
on a clinical end point (predictive biomarkers), or to be 
able to replace a clinical end point to assess the effects of 
a therapy (surrogate end points).

Prognostic and predictive biomarkers
Biomarkers can be image-based or physiological indicators, 
but with the advent of the targeted-therapy era, cellular, 
molecular and genetic biomarkers have become increas-
ingly important. In oncology, studies in breast cancer have 
pioneered the search for cellular, molecular and genetic 
biomarkers. In particular, the Early Breast Cancer Trialists’ 
Collaborative Group (EBCTCG) has accumulated long-
term data on the recurrence and mortality hazard rates 
over time for hormone receptor-positive tumors in com-
parison with receptor-negative tumors.8 The analyses 
conducted by the EBCTCG have confirmed that hormone 
receptor status is a prognostic marker for outcome in 
breast cancer. They have also confirmed that endocrine 

Key points

Candidate prognostic biomarkers are relatively easy to identify, but multi-site  ■
validation has rarely been done

Predictive biomarkers require extensive data for validation, based on large  ■
randomized clinical trials and meta-analyses

Surrogate end points require data demonstrating both that the surrogate  ■
is prognostic of the true end point, and that the effect of treatment on the 
surrogate correlates with that of the true end point

The biological plausibility of a biomarker or surrogate might support its  ■
adoption even in cases where full statistical validation is lacking

No consensus exists on the best approach for pragmatic evaluation and  ■
adoption of biomarkers and surrogate end points when robust statistical 
validation is lacking

therapies (such as tamoxifen and aromatase inhibitors) are 
only beneficial in tumors expressing hormonal receptors—
in other words, hormone receptor status is also a predic-
tive marker for therapeutic response.8 Current research in 
breast cancer is exploring the molecular hetero geneity of 
the disease in greater detail,9,10 and these studies might, 
in turn, lead to the discovery of further biomarkers and 
refine the use of those already identified. Other than in 
breast cancer, the number of validated prognostic and pre-
dictive bio markers remains sparse, but the accumulating 
knowledge in this field suggests that advances in molecular 
oncology will ultimately revolutionize patient selection as 
well as cancer treatments.

Biological considerations have a key role in the initial 
identification of prognostic and predictive biomarkers, 
and remain important—alongside statistical analysis of 
clinical trials—during their evaluation and adoption into 
clinical practice. For instance, HER2/neu over expression is 
integral to the biology of some forms of breast cancer, and 
accordingly HER2/neu status is expected to predict the 
clinical effectiveness of agents targeting the HER2 pathway, 
as has been confirmed in recent trials.11–15 Overexpression 
of HER2/neu in breast cancer, mutations in KIT in gastro-
intestinal stromal tumors, and the presence of the fusion 
gene BCR–ABL (Philadelphia chromosome) in chronic 
myelogenous leukemia are all examples of both prognos-
tic (linked to tumor biology) and predictive (linked to the 
treatment effect) bio markers. In addition, all of these genes 
are involved in driving the aggressive phenotype of the 
malignancy, and as such, might provide targets for thera-
peutic interventions.16,17 By contrast, putative biomarkers 
that are not integral to the disease process are less likely 
to have a prognostic impact, but in some cases they might 
predict a lack of benefit (rather than enhanced benefit). 
For instance, KRAS mutations in colorectal cancer are not 
disease-critical, but predict a lack of benefit of anti-EGFR 
monoclonal antibodies, and as such are highly useful as a 
predictive biomarker for patient selection.18,19

Importantly, while biological considerations can 
strengthen the case for the adoption of a biomarker, they 
must be interpreted with caution, and might in some 
cases prove misleading. For instance, at least one recent 
study suggests that HER2-directed therapies can be clini-
cally beneficial even in the absence of HER2/neu over-
expression,20,21 a finding that would not be anticipated 
on the basis of HER2 biology as currently understood. If 
confirmed, this finding might reveal other mechanisms 
of action of HER2-directed therapies separate from 
direct interaction with their primary molecular target. 
Ultimately, biology cannot substitute for the vali dation of 
biomarkers through clinical trials and statistical analysis.

Validating prognostic biomarkers
The process of validating biomarkers and surrogates 
from a statistical standpoint typically begins with an 
initial demonstration that a correlation exists between 
the marker and the outcome of interest, followed by 
independent statistical validation of the relationship. 
For a biomarker to be validated as prognostic, an associ-
ation must be demonstrated between the presence and 

Table 1 | Definitions of biomarkers and surrogate end points

Term Definition

Biomarker A characteristic that is objectively measured and evaluated as an 
indicator of normal biological processes, pathogenic processes, or 
pharmacologic responses to a therapeutic intervention2 

Prognostic 
biomarker

Biomarker that forecasts the likely course of disease irrespective  
of treatment

Predictive 
biomarker

Biomarker that forecasts the likely response to a speci!c treatment

Clinical end 
point

Measurement providing information on how a patient feels, functions 
or survives3

Surrogate end 
point

Measurement providing early and accurate prediction of both a 
clinical end point, and the effects of treatment on this end point

Validation Con!rmation by robust statistical methods that a candidate prognostic 
biomarker, predictive biomarkers or surrogate end point ful!lls a set of 
conditions that are necessary and suf!cient for its use in the clinic
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absence of the marker at baseline, or changes in the bio-
marker over time, and a treatment-independent clinical 
end point (Table 2).22 This is a relatively straightforward 
requirement from a statistical standpoint, and does not 
require any specific study design; indeed, small retro-
spective studies can often be a sufficient source of data. 
The number of events required to identify a genuine 
prognostic marker decreases as the hazard ratio for the 
outcome becomes more extreme (differs more from 
unity), and as the percentage of patients who have the 
marker approaches 50%.

The challenges of moving from the initial establishment 
of a correlation to robust validation are considerable, as 
illustrated by the MammaPrint® (Netherlands Cancer 
Institute and Agendia BV, Amsterdam, The Netherlands) 
gene signature.23–25 This signature is a microarray-based 
assay of 70 genes developed with the goal of predicting 
outcome in breast cancer (Figure 1).23 In a retro spective 
analysis involving a relatively small sample of 78 patients, 
this signature was identified as a strong prognostic 
marker for the occurrence of metastases within 5 years 
of resection. Patients with a poor prognosis based on their 
MammaPrint® signature were found to have an odds ratio 
of 15.0 (95% CI 3.3–56, P <0.001) for distant metastases 
within 5 years, when compared with patients who had a 
good prognosis.24

It is worth noting that while the sensitivity of predic-
tion for an unfavorable outcome using the 70-gene signa-
ture was high (91% of patients who developed metastatic 
disease had the poor-prognosis signature), the specificity 
was modest (only 59% of patients who did not develop 
metastatic disease had the good-prognosis signature).24 
Looking at the predictive accuracy of the signature, the 
positive predictive value of the signature was 0.63 (about 
two thirds of the patients with a poor-prognosis signa-
ture would be expected to develop metastases within 
5 years) and the negative predictive value was 0.9 (only 
one patient in 10 with a good-prognosis signature would 
be expected to develop metastases within 5 years). These 

findings indicate that while the MammaPrint® signa-
ture might potentially be useful to help avoid aggressive 
chemo therapy in patients with a good prognosis, it is not 
a sufficiently accurate predictor of which patients will, or 
will not, develop metastases to provide the sole basis for 
a treatment decision.

The results from the MammaPrint® study are instruc-
tive, because they demonstrate that a highly significant 
P-value and odds ratio are not necessarily adequate con-
ditions to identify a prognostic marker with wide clini-
cal utility.26,27 Indeed, a clear visual separation between 
the marker-positive and marker-negative Kaplan–Meier 
curves and a highly significant log-rank test might prove 
to be a misleading assessment of the worth of a prognostic 
marker. Even if a putative prognostic marker has a highly 
significant impact on a particular clinical outcome of 
interest after adjustment for classic clinical factors (either 
through stratification or in a multivariate model), it does 
not imply that the predictive accuracy of the marker is suf-
ficient to justify its use in clinical practice. Indeed, mea-
sures of predictive accuracy and of explained variation are 
generally required, but seldom reported.27,28

Initial identification of a prognostic biomarker should 
be followed up by multicenter validation or by cross- 
validation using re-sampling techniques if only one dataset 
is available. In the case of the MammaPrint® gene signa-
ture, a large validation study was conducted involving 
independent samples contributed by centers in Villejuif, 
Paris, Oxford, London and Stockholm, with central patho-
logical review performed in Milan, statis tical analysis in 
Brussels and microarray analysis in Lausanne.29,30 In this 
analysis, no significant variation was found in the prog-
nostic utility of the signature between centers, but hazard 
ratios were found to be less impressive than in the origi-
nal Amsterdam studies. For instance, the hazard ratio 
for time to distant metastases was 2.13 in the validation 
series compared with 6.07 in the original series (the sur-
vival hazard ratios were 2.63 and 17.46, respectively).28 
Of the various possible reasons for this disparity, one of 

Table 2 | Examples of prognostic and predictive biomarkers and surrogate end points

Type of 
biomarker

Uses in 
management 
and clinical trials

Identification Validation Examples

Prognostic 
biomarker

Treatment choice, 
patient selection 
and strati!cation

Easy, but often 
"awed or biased

Frequent, but often 
inadequate because of 
regression to the mean 
or "aws in the initial 
identi!cation study

Poor performance status, elevated hepatic enzymes, 
multi-site metastases in advanced colorectal cancer.

Predictive 
biomarker

Treatment choice, 
patient selection 
and strati!cation

Dif!cult, 
requires 
randomized trial

Uncommon, requires 
large randomized trial

KRAS mutation predictive of lack of activity of 
cetuximab and panitumumab in colon cancer.18,19

Hormone receptor status predictive of effect of 
tamoxifen and aromatase inhibitors in breast cancer.79

HER2/neu ampli!cation predictive of effect of 
trastuzumab and lapatinib in breast cancer.11–15

EGFR mutations predictive of effect of erlotinib and 
ge!tinib in non-small-cell lung cancer.80

Surrogate 
end point

Treatment choice, 
treatment 
evaluation

Very dif!cult, 
requires meta-   
analysis or large 
randomized trial

Rare, requires 
meta-analysis or large 
randomized trial

Progression-free survival as a surrogate for overall 
survival for "uoropyrimidine-based regimens in 
treating colon cancer.66

Hematologic complete remission for time to disease 
progression in patients with leukemias.46,47
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the most interesting was the duration of follow-up, which 
was twice as long (13.6 years) in the vali dation series than  
in the original series (6.7 years). This finding suggests that 
the prognostic impact of the gene signature is highly time-
dependent, that is, the signature is very good at identify-
ing patients at high risk of early disease progression, as 
opposed to those at risk of later disease progression.29,30 
The validation study concluded that the MammaPrint® 
gene signature does provide some additional prognos-
tic information to that derived from known clinical and 
pathological factors (including age, tumor size and grade, 
estrogen receptor status and nodal status), but its overall 
clinical utility remains to be confirmed.

Even when multicenter statistical confirmation for a 
biomarker has been achieved, the ultimate proof of its 
usefulness in the clinic still requires randomized, prospec-
tive evidence in clinical trials. In particular, prospective 
studies are required to clarify the utility of the biomarker 
in patients for whom the optimal course of treatment 
is not apparent from classic parameters. For instance, 
patients with a low risk of disease recurrence might require 
only standard therapy, whereas individuals at high risk of 
disease recurrence require experimental therapy, but for 
patients with intermediate risk (based on the biomarker 
and/or clinico-pathological factors) there might be uncer-
tainty regarding the treatment decision. Such patients 
could be randomized to either standard or experimen-
tal treatment in prospective studies to clarify the role of  
the biomarker in determining treatment. Examples of such 
biomarker-based treatment trials in early breast cancer 
include the ongoing MINDACT31 and TAILORx32 trials.

Validating predictive biomarkers
The case of the MammaPrint® signature illustrates the dif-
ficulties of statistically validating a promising prognostic 
biomarker. Predictive markers, however, present even 

greater challenges, both with respect to initial demon-
stration of a correlation of the outcome with the marker 
measured and subsequent robust validation (Table 2).

A biomarker can be considered to be predictive when 
the baseline value, or changes in the value of the biomarker 
over time, forecasts the efficacy or toxicity of a treatment, 
as assessed by a defined clinical end point.19 Statistical 
identification of predictive bio markers requires data from 
randomized trials that include patients with both high and 
low levels of the biomarker. The highest level of evidence 
derives from trials with an ‘interaction’ design, in which all 
patients are stratified by biomarker level and then rando-
mized to one of two treatments; this approach to validation 
is currently being used in the ongoing Marker Validation of  
Erlotinib in Lung Cancer (MARVEL) trial, in which 
patients are tested for EGFR-status and then rando mized 
between erlotinib (Tarceva®, F. Hoffmann-La Roche Ltd, 
Basel, Switzerland) or pemetrexed (Alimta®, Eli Lilly and 
Company, Indianapolis, IN) as second-line treatment 
of non-small-cell lung cancer.33 In this trial, the analysis 
is being conducted separately in marker-positive and 
marker-negative patients, with the use of an inter action 
test aimed at showing that the treatment effects differ in 
these two groups. Large numbers of events, and hence 
patient populations, are generally required for the reliable 
detection of inter actions.34 Realistically, therefore, ‘inter-
action’ trials capable of validating predictive markers are 
likely to be few in number.

Therefore, the validation of most emerging bio markers 
intended to inform a binary treatment decision employ 
alternative approaches to ‘interaction’ trials. Frequently, a 
‘selection’ design has been adopted, in which only marker-
positive patients enter the validation trial.35,36 Such trials 
have the capacity to confirm the usefulness of the marker 
in indentifying a population in which there is a treatment 
benefit, but they do not imply that the marker is truly pre-
dictive, since they provide no information with respect to 
the lack of benefit among marker-negative patients. A key 
example of such a situ ation is the effect of trastuzumab 
(Herceptin®, Genentech, San Francisco, CA) in delaying 
or preventing recurrence of breast cancer. In patients with 
HER2/neu amplified tumors, the benefit of trastuzumab 
treatment has been established by several large rando-
mized trials.11–15 However, it has been suggested that treat-
ment might have similar effects in patients with HER2/neu  
non-amplified tumors.20,21 Specifically, for about 10% of 
patients entered in the NSABP B-3120 and NCCTG 983121 
trials, tumors had been assessed as HER2/neu amplified in 
local laboratories, but not when retested in central labora-
tories. An analysis of this subset of patients suggested 
that they enjoyed the same benefit from trastuzumab as 
patients confirmed to be HER2/neu-amplified by central 
laboratories. Several explanations were offered to explain 
this finding: HER2 might be overexpressed without gene 
amplification, trastuzumab might exert beneficial effects 
not mediated by the currently known HER2 alterations, 
there might be laboratory artifacts in assessing HER2/neu  
amplification, or the results (based on relatively small 
subsets) might simply be due to chance. Whatever the 
explanation turns out to be in this particular case, it 
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suggests that interaction trials (with a suitably small 
marker-negative group) may be indicated even when 
the prior assumption is that treatment will work only in 
marker-positive patients.

The ‘selection’ approach is being used in a number of 
current trials, notably in studies that were initiated to test 
EGFR inhibitors in patients with KRAS wild-type colo-
rectal cancer as a treatment of advanced disease and as an 
adjuvant treatment, including the ongoing trials N014737, 
PETACC-838, and C8040539. A further example is the 
ECOG E520240 trial in patients with stage II colon cancer. 
In this trial, patients whose tumors have micro satellite 
instability (a putative predictive biomarker of resistance 
to fluoropyri midines), and a normal 18q chromosome 
(a prognostic biomarker) will not receive adjuvant therapy, 
whereas patients whose tumors have microsatellite stabil-
ity and 18q chromosomal abnormality will be randomized 
to receive a standard regimen of adjuvant therapy with 
5-fluorouracil, leucovorin and oxaliplatin with or without 
bevacizumab. Sargent and colleagues35,36,41 have offered a 
detailed discussion of the limitations of these trial designs 
to prospectively validate predictive biomarkers; in short, 
the selection design cannot confirm predictive effects 
while the interaction design may lack statistical power  
to do so.

Given the challenges of performing randomized studies 
to validate predictive biomarkers, retrospective analyses 
of completed randomized trials might yet prove to be the 
most important source of evidence. However, to yield 
convincing evidence, such retrospective analyses need to 
be planned in a prospective protocol that provides analy-
tical details (cut-points, statistical methods, etc.) as well 
as interpretational guidelines (level of statistical signifi-
cance, magnitude of effect, etc.). If several series are avail-
able, the results should be concordant across them. This 
‘retrospective-prospective’ approach was used recently in 
advanced colorectal cancer, where KRAS mutation status 
was consistently shown in multiple trials to predict for 
a complete lack of effect of two EGFR-directed mono-
clonal antibodies, cetuximab (Erbitux®, Merck KgaA, 
Darmstadt, Germany) and panitumumab (Vectibix®, 
Amgen, Thousand Oaks, CA).18,19,42–44

Validating surrogate end points
At present, there are few accepted surrogate end points 
in clinical oncology, and none based on tumor response, 
molecular or genetic markers in solid tumors.45 By con-
trast, in non-solid tumors, hematological complete 
remission has long been considered a surrogate for time-
to-disease progression and overall survival.46,47 Statistical 
validation of a surrogate end point is a strenuous process, 
with respect to both initial demonstration of an appa-
rent relationship between a surrogate and the clinical 
end point, and subsequent robust confirmation (Table 2). 
General literature reviews on surrogate end points are 
available from both Weir and Walley48 and Lassere.49

Prentice initially proposed that for a surrogacy relation-
ship to be established the surrogate should predict the 
clinical end point, treatment should have a significant 
effect on both the candidate surrogate and the clinical 

end point, and the treatment effect on the surrogate 
should capture the full effect of treatment on the clinical 
end point.50 This latter requirement has proved unrea-
listic and, consequently, alternative paradigms have been 
developed. While validation criteria are still an area of 
intense statistical research, the current consensus is that 
validation can be based on a ‘correlation approach’. This 
involves demonstration in either randomized trials or 
meta-analysis that, on the one hand, the surrogate is prog-
nostic for disease outcome and, on the other hand, that 
the effect of intervention on the surrogate is sufficiently 
correlated with the effect on the true end point.48,49,51–57

Thus, to achieve validation, the candidate surrogate 
marker must first be shown to forecast outcome in the 
same fashion as a prognostic marker, without reference 
to specific interventions. This aspect of surrogacy is 
generally referred to as ‘individual-level’ surrogacy (an 
alternative term might be ‘outcome’ surrogacy), which 
means that for individual patients, the marker or surro-
gate outcome must correlate well with the final outcome 
of interest, such as survival. Secondly, and more critically, 
the effect of treatment on the candidate surrogate marker 
must be closely correlated with the effect of treatment on 
the true clinical end point. This aspect of surrogacy is 
generally referred to as ‘trial-level’ surrogacy (an alter-
native term might be ‘effect’ surrogacy) since it must be 
demonstrated for a group of patients in a clinical trial.

Statistically, individual-level surrogacy and trial-level 
surrogacy are independent of one another for normally 
distributed end points and, as such, they require sepa-
rate validation.58 Standard correlation coefficients are 
the most commonly used approach to quantify statisti-
cal associ ations, but alternative measures derived from 
information theory are also available and hold promise 
as a unifying paradigm.59 The individual-level surrogacy 
can be demon strated in a single trial, but a shortcoming of 
trial-level surrogacy is that it must typically be based on a 
meta-analysis of several randomized trials.60–62 However, 
when an insufficient number of trials are available to 
conduct a meta-analysis, it might be possible to break the 
results of large trials down into smaller units of analy-
sis, such as individual countries or study centers. This 
approach has been used to show that prostate- specific 
antigen should not be considered a surrogate for survival 
in patients with advanced prostatic cancer.63,64

With respect to trial-level surrogacy, the concept of 
a ‘surrogate threshold effect’ (STE) was recently intro-
duced. The STE is defined as the minimum treatment 
effect on the surrogate necessary to predict an effect on 
the true end point.65 This approach affords a natural 
interpretation of surrogacy from a clinical point of view, 
since treatments that are able to induce effects larger 
than the STE on the surrogate would be expected to also 
induce a proportionally greater effect on the clinical 
outcome. In advanced colorectal cancer, progression-
free survival (PFS) has been shown to be an acceptable 
surrogate end point for overall survival with respect to 
fluoropyrimidine- based therapies, with PFS and overall 
survival being highly correlated (‘individual-level’ surro-
gacy) and effects of treatment on PFS and overall survival 
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being correlated (‘trial-level’ surrogacy) (Figures 2 
and 3).66 On the basis of a historical series of 10 random-
ized trials evaluating fluoropyrimidine-based treatment, 
the surrogate threshold effect was equal to 0.86, or 0.77 
after elimination of a highly influential trial, indicating 
that if a new treatment reduced the hazard of tumor 
progression by at least 23%, it would be very likely to 
produce a benefit on survival (Figure 3).65

A major difficulty for the validation of surrogate end 
points, however, arises from the fact that they are vali-
dated with respect to a specific treatment or set of treat-
ments. For a new treatment with a novel mechanism of 
action, it is uncertain if the same surrogacy relationship is 
applicable to that demonstrated for previous treatments. 
For instance, in first-line trials in advanced colo rectal 
cancer, PFS has not yet been demonstrated to be a surro-
gate for overall survival with respect to novel targeted 
therapies such as bevacizumab (Avastin®, Genentech, San 
Francisco, CA), panitumumab and cetuximab. The ques-
tion arises as to whether it is reasonable to assume that a 
surrogacy that was demonstrated for prior therapeutics 
can legitimately be treated as a surrogate in clinical assess-
ment of every new treatment that emerges. A further dif-
ficulty arises from the fact that treatment options evolve 

with time. For instance, PFS was validated as a surrogate 
for classical 5-fluorouracil-based chemotherapy in colo-
rectal cancer before the introduction of novel cyto toxics 
and targeted therapies, which now provide a greater 
range of salvage therapies. Had such therapies been 
available at an earlier stage in the evo lu tion of colorectal 
cancer treatment, it is unlikely that the surrogacy of PFS 
for overall survival would have been demonstrated for 
5- fluorouracil-based chemotherapy.66

Indeed, as standards of care in clinical oncology evolve, 
the difficulties of demonstrating surrogacy between 
proximal end points and overall survival will inevit-
ably mount as the number of active treatment options 
increase and survival is extended. A recent study in the 
area of advanced breast cancer found that although tumor 
response, PFS, disease control and time-to-disease pro-
gression were all associated with overall survival at an 
individual-level, none had a sufficiently strong associ ation 
at trial-level to qualify as a validated surrogate end point.67 
An example of this situation was demon strated in a large 
trial of bevacizumab in advanced breast cancer whereby 
bevacizumab treatment was associated with a highly 
signifi cant PFS benefit, but no overall survival benefit.68

These observations suggest that it might be difficult to 
formally establish PFS as a surrogate for overall survival 
in solid tumors for which several lines of treatment are 
currently available, but this does not imply that PFS does 
not have utility as an end point in its own right. Indeed, 
PFS might be the only sensitive (and realistic) end point 
for drug evaluation, given the availability of multiple 
active therapeutic lines (all of which have the potential to 
improve overall survival).69

Strict or pragmatic validation?
The current shortage of validated predictive and surro-
gate biomarkers in oncology reflects not only the statisti-
cal challenges discussed in this article, but difficulties at 
every stage of the discovery and evaluation process.70 The 
US National Cancer Institute’s Early Detection Research 
Network has proposed five distinct phases for the devel-
opment of biomarkers for early cancer detection.70,71 In 
Table 3, we adapt these five phases to the development 
of any biomarker, and outline the current status of 
MammaPrint® with respect to these phases as an example. 
One of the greatest challenges of validation is the lack of 
availability of both high-quality biological samples and 
standardized measures of response from all major trials, 
whether the trials are run by government-funded agen-
cies or by industry. Regulatory authorities, such as the 
European Medicines Agency (EMEA) and the FDA should 
consider making stipulations to alleviate this problem 
to their industry and academic partners. For example, 
the generation of multi-trial tissue banks and databases 
would accelerate the search for bio markers and provide 
a resource for retrospective analysis. The Foundation for 
the NIH Biomarkers Consortium in the USA represents a 
welcome but modest step in this direction.72

Despite the difficulties involved, the next few years are 
likely to see the accumulation of an increasing number of 
biomarker candidates with varying degrees of statistical 

Figure 2 | Progression-free survival (PFS) and overall survival (OS) in advanced 
colorectal cancer.

Figure 3 | Surrogate end point in advanced colorectal cancer: ‘trial level’ (effect) 
surrogacy and surrogate threshold effect.
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validation. Adherence to standards of reporting should 
improve the quality of validation studies.73 It is also likely 
that in addition to individual biomarkers, groups of 
biomarkers will be developed and used collectively (for 
instance in multivariate analysis or other predictive model-
ing) to predict outcomes and responses despite the limited 
predictive power of individual candidates. Biological con-
siderations will help increase the plausibility, and hence 
the practical acceptability, of predictive biomarkers despite 
incomplete validation. For example, HER2/neu status is 
currently accepted as a predictive biomarker for the effi-
cacy of trastuzumab treatment, despite the absence of a 
formal test of interaction between the biomarker and the 
effects of this therapeutic agent.74 This is mainly because 
the benefit of trastuzumab is large and well-established 
in patients with HER2/neu-positive tumors, while there 
is as yet no convincing evidence for a benefit in patients 
with HER2/neu-negative tumors. The combined use of 
information from several biomarkers is also likely to be of 
pragmatic utility in clinical decision-making, for instance 
by considering data for a biomarker that when present has 
a high sensitivity for an outcome mandating a particu-
lar therapy (most patients having the marker should be 
treated), alongside data for a biomarker that when absent 
mitigates with high specificity against treatment (most 
patients not having the marker should not be treated).

With regard to surrogate end points, the difficulties 
encountered in validating PFS or similar measures of 
disease control are likely to increase with the availability 
of more treatment options, even for treatments capable of 
major extensions in both disease control and overall sur-
vival. Paradoxically, while end points that can be observed 
early are required to increase the speed of clinical trials, 
they are least likely to achieve the status of surrogates for 
overall survival in situations where new treatments are 
most effective. This paradox arises because such new 
treatments will likely be given to most, if not all, patients 
once first-line trial treatments are completed, and this will 
make the benefits of the new treatment on overall survival 
hard to demonstrate statistically. Trials that compare strat-
egies including several lines of treatment have been pro-
posed for a better assessment of the true impact of a new 
agent, for instance to decide whether the agent should be 
given as part of first-line treatment, or later therapies.75,76 
However, the confounding effect of giving a very effective 
new agent after failure of a strategy remains an issue in the 
analysis of overall survival.

These difficulties call for a pragmatic approach, in 
which candidate surrogates are evaluated not only on  
the basis of statistical validity, but also, as suggested by the  
International Conference on Harmonization, with respect 
to their biological plausibility and usefulness demon strated 
in clinical trials.77 This raises the question of how surrogate 
end points can be evaluated systematically, robustly and 
to common standards within a broader pragmatic frame-
work. Lassere has proposed a formal schema for numeri-
cally assessing the strength of the relationships between 
surrogate biomarkers and end points, based on a weighted 
evaluation of bio logical, epidemiological, statistical, clini-
cal trial and risk-benefit evidence.49 Lathia et al.78 have 

also discussed the multi-faceted evaluation of candidate 
surrogates, and argued for a flexible approach to the adop-
tion of surrogates. Further clarification and standardiza-
tion might be required; in the mean time, individual-level 
and trial-level data supported by biological considerations 
should remain the cardinal criteria by which the validity 
of candidate surrogates is assessed.

Conclusions
Prognostic and predictive biomarkers as well as surrogate 
end points are all required in oncology, but few have been 
confirmed, and evidence of their effectiveness in trials 
and in the clinic remains limited. Even for prognostic 
bio markers, which require comparatively modest retro-
spective data for initial identification, many candidates 
turn out to be flawed after independent validation studies. 
Predictive markers require large multicenter rando-
mized trials for validation, while surrogate end points 
have proved the most challenging of all biomarkers to 
identify, and require meta-analyses of randomized trials 
for validation. Notwithstanding these challenges, many 
trials are in progress to identify and validate biomarkers 
and surrogate end points in oncology, and as the search 
for effective targeted therapies continues many further 
candidates are likely to emerge. Realistically, the adoption 
of bio markers and surrogate end points cannot rely on 
exhaustive statistical validation in all circumstances, but 
instead should be based on evidence utilizing a combina-
tion of statistical, clinical and biological considerations. 
This in turn raises questions about how the broader 
process of biomarker and end point adoption should be 
structured and standardized.

Table 3 | The phases of biomarker development and validation71

Phase Title Purpose Example of MammaPrint®

1 Preclinical 
exploratory 
studies

Identify promising 
biomarkers

Not applicable

2 Clinical assay 
development

Develop and validate the 
clinical assay used to 
measure the biomarker

Initial series of 78 patients23

3 Retrospective 
validation

Quantify the biomarker 
impact using available 
patient series, tumor banks 
and other stored material

Retrospective series of 234 
patients from same 
institution24 and 326 patients 
from !ve other institutions29

4 Prospective 
validation

Con!rm the biomarker 
impact in prospective trials

Prospective ongoing trial81

5 Clinical utility Show the clinical utility  
of the biomarker in 
prospective trials

Prospective ongoing trial81

Review criteria

The PubMed database was searched for articles published 
between the period of 1st January 2004 to 1st April 
2009. The search terms used were “surrogate endpoint”, 
“biomarker”, “validation” and “qualification” within the 
article title or abstract. Results were screened for relevant 
articles and PubMed-designated related articles. The 
authors contributed further articles to the search results 
based on their personal knowledge and experience.
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