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Abstract: Although there is great
promise in the benefits to be
obtained by analyzing cancer ge-
nomes, numerous challenges hin-
der different stages of the process,
from the problem of sample prep-
aration and the validation of the
experimental techniques, to the
interpretation of the results. This
chapter specifically focuses on the
technical issues associated with the
bioinformatics analysis of cancer
genome data. The main issues
addressed are the use of database
and software resources, the use of
analysis workflows and the presen-
tation of clinically relevant action
items. We attempt to aid new
developers in the field by describ-
ing the different stages of analysis
and discussing current approaches,
as well as by providing practical
advice on how to access and use
resources, and how to implement
recommendations. Real cases from
cancer genome projects are used
as examples.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Introduction

Cancer is commonly defined as a

‘‘disease of the genes’’, a definition that

emphasizes the importance of cataloguing

and analyzing tumor-associated muta-

tions. The recent advances in sequencing

technology have underpinned the prog-

ress in several large-scale projects to

systematically compile genomic informa-

tion related to cancer. For example,

the Cancer Genome Atlas (http://

cancergenome.nih.gov/) and the projects

overseen by the International Cancer

Genome Consortium [1] (http://icgc.

org/) have focused on identifying links

between cancer and genomic variation.

Unsurprisingly, the analysis of genomic

mutations associated with cancer is also

making its way into clinical applications

[2–4].

Cancer may be favored by genetic

predisposition, although it is thought to

be primarily caused by mutations in

specific tissues that accumulate over time.

Genetic predisposition is represented by

germline variants and indeed, many com-

mon germline variants have been associ-

ated with specific diseases, as well as with

altered drug susceptibility and/or toxicity.

The association of germline variants with

clinical features and disease is mainly

achieved through Genome Wide Associa-

tion Studies (GWAS). GWAS use large

cohorts of cases to analyze the relationship

between the disease and thousands or

millions of mutations across the entire

genome, and they are the subject of a

separate chapter in this issue.

The study of cancer genomes differs

significantly from GWAS, as during the

lifetime of the organism variants only

accumulate in the tumor or the affected

tissues, and they are not transmitted

from generation to generation. These are

known as somatic mutations. Mutations

accumulate as the tumors progress through

processes that are not completely under-

stood and that depend on the evolution of

the different cell types in the tumor, i.e.,

clonal versus parallel evolution [5]. Re-

gardless of which model is more relevant,

the tumor genome includes mutations that

facilitate tumorigenesis or are that essential

for the generation of the tumor (known

as tumor ‘drivers’), and others that have

accumulated during the growth of the

tumor (known as ‘passengers’) [6]. Distin-

guishing ‘driver’ from ‘passenger’ muta-

tions is crucial for the interpretation of

cancer genomes [5].

Depending on the type of data and the

aim of the analysis, cancer genome

analysis may focus on the cancer type or

on the patient. The first approach consists

of examining a cohort of patients suffering

from a particular type of cancer, and is

used to identify biomarkers, characterize

cancer subtypes with clinical or therapeu-

tic implications, or to simply advance our

understanding of the tumorigenic process.

The second approach involves examining

the genome of a particular cancer patient

in the search for specific alterations that

may be susceptible to tailored therapy.

Although both approaches draw on

common experimental and bioinformatics

techniques, they analyze different types of

information, have different goals and they

require the presentation of the results in

distinct ways.

The development of Next Generation

Sequencing (NGS) has not only helped

identify genetic variants but also, it

represents an important aid in the study

of epigenetics (DNAseq and ChipSeq of

histone methylation marks), transcription-

al regulation and splicing (RNAseq). The

combined power of such genomic data

provides a more complete definition of

‘cancer genomes’.

To aid developers new to the field of

cancer genomics, this chapter will discuss

the particularities of cancer genome

analysis, as well as the main scientific

and technical challenges, and potential

solutions.

2. Overview of Cancer Genome
Analysis

The sequence of the steps in an

idealized cancer genome analysis pipeline

are presented in Figure 1. For each step

listed, the biological disciplines involved,

the bioinformatics techniques used and

some of the most salient challenges that

arise are listed.
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2.1. Sequencing, Alignment and
Variant Calling

After samples are sequenced, sequencing

reads are aligned to a reference genome

and all differences are identified through a

process known as variant calling. The output

of the variant calling is a list of genomic

variations that is organized according to

their genomic location (chromosome and

position) and the variant allele. They may

be accompanied by scores measuring the

sequencing quality over that region or the

prevalence of the variant allele in the

samples. The workflow employed for this

type of analysis is commonly known as a

primary analysis (For more information on

sequencing, alignment and variant calling,

please refer to [7,8]).

This chapter describes the subsequent

steps in the analysis of the variants

detected at the genome level. This process

is relatively well established and is the

main subject of this chapter.

2.2. Consequence, Recurrence
Analysis and Candidate Drivers

The list of somatic variants obtained

from the primary analysis of DNA se-

quences is carefully examined to identify

mutations that may alter the function of

protein products. DNA mutations are

translated into mutations in RNA tran-

scripts, and from RNA into proteins,

potentially altering their amino acid se-

quence. The impact of these amino acid

alterations on protein function can range

from largely irrelevant (if they do not affect

any region of the protein involved in cata-

lysis or binding, or if they do not signi-

ficantly alter the structure and stability of

the protein) to highly deleterious (for

example if the amino acid changes result

in the formation of a truncated protein

lacking important functional regions). The

severity of these alterations can be assessed

What to Learn in This Chapter

This chapter presents an overview of how cancer genomes can be analyzed,
discussing some of the challenges involved and providing practical advice on
how to address them. As the primary analysis of experimental data is described
elsewhere (sequencing, alignment and variant calling), we will focus on the
secondary analysis of the data, i.e., the selection of candidate driver genes,
functional interpretation and the presentation of the results. Emphasis is placed
on how to build applications that meet the needs of researchers, academics and
clinicians. The general features of such applications are laid out, along with advice
on their design and implementation. This document should serve as a starter
guide for bioinformaticians interested in the analysis of cancer genomes,
although we also hope that more experienced bioinformaticians will find
interesting solutions to some key technical issues.

Figure 1. Idealized cancer analysis pipeline. The column on the left shows a list of sequential steps. The columns on the right show the
bioinformatics and molecular biology disciplines involved at each step, the types of techniques employed and some of the current challenges faced.
doi:10.1371/journal.pcbi.1002824.g001
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using specialized software tools known as

protein mutation pathogenicity predictors.

Mutations are also examined to identify

recurrence, which may point to key genes

and mutational hotspots. The predicted

consequences of the mutations and their

recurrence are used to select potential

driver mutations that may be directly

involved in the tumorigenic process.

Note that not all mutations that have

deleterious consequences for protein func-

tion are necessarily involved in cancer as

the proteins affected may not play any

fundamental role in tumorigenesis.

2.3. Pathways and Functional
Analysis

Genes that are recurrently mutated in

cancer tend to be easily identifiable, and

obvious examples include TP53 and

KRAS that are mutated in many cancer

types. More often mutations are more

widely distributed and the probability of

finding the same gene mutated in several

cases is low, making it more difficult to

identify common functional features asso-

ciated with a given cancer.

Pathway analysis offers a means to

overcome this challenge by associating

mutated genes with known signaling path-

ways, regulatory networks, clusters in

protein interaction networks, protein com-

plexes or general functional classes, such

as those defined in the Gene Ontology

database. A number of statistical me-

thods have been developed to determine

the significance of the associations between

mutated genes and these functional classes.

Pathways analysis has now become a

fundamental component of cancer genome

analysis and it is described in almost all

cancer genome publications. In this sense,

cancer is not only a ‘disease of the genes’

but also a ‘disease of the pathways’.

2.4. Integration, Visualization and
Interpretation

Information on the mutational status of

genes can be better understood if it is

integrated with information about gene

expression and related to alterations in:

the copy number of each gene (CNVs), a

very common phenomenon in cancer;

mutations in promoters and enhancers;

variations in the affinity of transcription

factors and DNA binding proteins; or

dysregulation of epigenetic control.

The importance of the relationships

between different genome data sources is

illustrated by the case of chronic lympho-

cytic leukemia (CLL). The consequences

of mutations in the SF3B1 splicing factor,

detected by exon sequencing [9], were

investigated in studies of DNA methyla-

tion [10] and RNA sequencing in the same

patients (Ferreira et al. submitted). At the

technical level, the analysis of heteroge-

neous genomic data adds further com-

plications to analysis workflows, as the

underlying biological bases are often not

fully understood. Consequently, relatively

few published studies have effectively

combined more than a few combinations

of such data [11–13]. These studies are

usually supported by visualization tools to

analyze the results within specialist appli-

cations tailored to fit the specific set of data

generated.

Finally, in a personalized medicine

application, the results must be related to

information of clinical relevance, such as

potentially related drugs and therapies.

2.5. Current Challenges
In general terms, three key challenges

exist when analyzing cancer genomes:

(1) the heterogeneity of the data to be

analyzed, which ranges from genomic

mutations in coding regions to alterations

in gene expression or epigenetic marks; (2)

the range of databases and software

resources required to analyse and interpret

the results; and (3) the comprehensive

expertise required to understand the impli-

cations of such varied experimental data.

3. Critical Bioinformatics Tasks
in Cancer Genome Analysis

An overview of the four main tasks that

should be performed when analyzing the

cancer genome is shown in Figure 2, along

with the associated requirements. In the

first instance, the mutations initially de-

tected at the DNA level must be trimmed

to include only somatic variations, remov-

ing the germline SNPs detected in healthy

tissue of the same individuals or in the

general population. The description of the

different stages of analysis that we present

begins with this list of somatic variants and

their associated genomic locations.

3.1. Mapping between Coordinate
Systems

Translating mutational information de-

rived from genomic coordinates to other

data types is an obvious first step. Al-

though this may seem trivial, its impor-

tance should not be underestimated given

that alterations in single nucleotides can

have significant consequences.

The position of DNA mutations in

transcripts and protein products must be

obtained by translating their coordinates

across various systems. For example, point

mutations in coding regions can be map-

ped to different transcripts by finding the

exon affected, the offset of the mutation

inside that exon and the position of the

exon inside the transcript. By removing

the 59 UTR region of the transcript

sequence and dividing the rest into triplets,

the affected codon can be identified, as

well as the possible amino acid replace-

ment. Ensembl BioMart provides all the

information necessary to perform this type

of mapping, while a number of other

systems also provide this functionality (see

Table 1).

One important technical consideration

when mapping genomic variants is the

version of the genome build. It is essential

to use the correct build and many map-

ping tools support different versions of the

genome build. Moreover, the data in

Ensembl is thoroughly versioned, so that

the BioMart interface can be used to

gather all genomic information consistent-

ly for any particular build. Thus, entities

(mutations, genes, transcripts or proteins)

can be linked back to the appropriate ver-

sion using the Ensembl web site archives.

3.2. Driver Mutations and
Pathogenicity Prediction

In addition to false variants introduced

by technical errors, some variants present

in the samples may not contribute to

cancer development. The terms ‘driver’

and ‘passenger’ were first used in 1964 in

the context of viral infections that drive

cancer [6]. However, they are now used to

distinguish mutations that drive cancer

onset and progression from those that play

little or no role in such processes but that

are propagated by their co-existence with

driver mutations. The problem of distin-

guishing driver from passenger mutations

remains unsolved as yet. Experimental

assays of activity are one means of testing

the tumorigenic potential of mutations

[14], although such assays are difficult to

perform to scale. Consequently, a number

of complementary in-silico methods have

been developed to identify driver muta-

tions. Statistical approaches seek to identify

traces of mutation selection during tumor

formation by looking at the prevalence of

mutations in particular genes in sample

cohorts, or the ratios of synonymous versus

non-synonymous mutations in particular

candidate genes. However, such statistical

approaches require large sample cohorts to

achieve sufficient power. Alternatively, in-

silico predictions of pathogenicity can be

used to restrict the list of potential driver

mutations to those that are likely to alter

protein function [15].

Several tools that implement different

versions of these general concepts can be
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used to perform pathogenicity predictions

for point mutations in coding regions (see

Table 1). Prediction is far more compli-

cated for genomic aberrations and muta-

tions that affect non-coding regions of

DNA, an area of basic research that is still

in its early stages. However, the large

collections of genomic information gath-

ered by the ENCODE project [16] will

doubtless play a key role in this research.

Despite their limited scope, mutations in

coding regions are the most useful for

cancer genome analysis. This is initially

because it is still cheaper to sequence

exomes than full genomes and also,

because they are closer to actionable

medical items, given that most drugs target

proteins. Indeed, most clinical success

stories based on cancer genome analysis

have involved the analysis of point muta-

tions in proteins [3].

In particular, we have focused on the

need to analyze the consequences of

mutations in alternative isoforms of each

gene, in addition to those in the main

isoforms. Despite the potential implica-

tions of alternative splicing, this problem

remains largely overlooked by current

applications. A common solution is to

assign the genomic mutations to just one of

the several potential isoforms, without

considering their possible incidence of

other splice isoforms, and in most cases

without knowing which isoform is actually

produced in that particular tissue. The

availability of RNAseq data should solve

this problem by demonstrating which

isoforms are specifically expressed in the

cell type of interest, in which case,

additional software will be necessary to

analyze the data generated by the new

experiments.

3.3 Functional Interpretation
Some genes harbor a large number of

mutations in cancer genomes, such as TP53

and KRAS, whose importance and rele-

vance as cancer drivers have been well

established. Frequently however, genomic

data reveals the presence of mutated genes

that are far less prevalent, and the signif-

icance of these genes must be considered in

the context of the functional units they are

part of. For example, SF3B1 was mutated

in only 10 out of 105 samples of chronic

lymphocytic leukemia (CLL) in the study

conducted by the ICGC consortium [9],

and in 14 out of 96 in the study performed

in the Broad Institute [17]. While these

numbers are statistically significant, many

other components of the RNA splicing and

transport machinery are also mutated in

CLL. Even if these mutations occur at

lower frequencies they further emphasize

the importance of this gene [18].

Functional interpretation aims to iden-

tify large biological units that correlate

better with the phenotype than individual

mutated genes, and as such, it can produce

a more general interpretation of the

acquired genomic information. The in-

volvement of genes in specific biological,

metabolic and signaling pathways is the

type of functional annotation most com-

monly considered and thus, functional

analysis is often termed ‘pathway analysis’.

However, functional annotations may also

include other types of biological associa-

tions such as cellular location, protein

domain composition, and classes of cellular

or biochemical terms, such as GO terms

(Table 2 lists some useful databases along

with the relevant functional annotations).

Over the last decade, multiple statistical

approaches have been developed to iden-

tify functional annotations (also known as

‘labels’) that are significantly associated

with lists of entities, collectively known as

‘enrichment analysis’. Indeed, the current

systems for functional interpretation have

been derived from the systems previously

developed to analyze expression arrays,

and they have been adapted to analyze

lists of cancer-related genes. As this step is

critical to perform functional interpreta-

tions, special care must be taken when

selecting methods to be incorporated into

the analysis pipeline. Cases in which the

characteristics of the data challenge the

assumptions of the methods are parti-

cularly delicate. For instance, a hyper-

geometric test might be appropriate to

analyze gene lists that are differentially

expressed in gene expression arrays. How-

ever, when dealing with lists of mutated

genes this approach does not account for

factors such as the number of mutations

per gene, the size of the genes, or the presence

of genes in overlapping genomic clusters

(where one mutation may simultaneously

Figure 2. Main tasks in an analysis pipeline. Starting with the patient information derived from NGS experiments, the variants are mapped
between genes and proteins, evaluated for pathogenicity, considered systemically through functional analysis, and the resulting conclusions
translated into actionable results.
doi:10.1371/journal.pcbi.1002824.g002

Table 1. Selection of the software packages used in cancer genome analysis.

Software Functionality Availability

VEP Mutation mapping Local installation or web site

ANNOVAR Mutation mapping Local installation

VARIANT Mutation mapping Local installation, web site, and web service

Mutation Assessor, SIFT For protein variants Web site and web service

Condel Consensus prediction Web site and web service

wKinMut Kinase specific Web site and web service

Genecodis Annotation enrichment for gene lists Web site and web service

FatiGO, David Annotation enrichment for gene lists Web site

Cytoscape Network visualization and analysis Local installation. Can be embedded in browser
applications

R Statistics and plotting Local installation

Taverna Workflow enactment Local installation

Galaxy Workflow enactment Browser application

doi:10.1371/journal.pcbi.1002824.t001
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affect several genes). As none of these issues

are accommodated by the standard ap-

proaches used for gene expression analysis,

new developments are clearly required for

cancer genome analysis.

To alleviate the rigidity introduced by

the binary nature of set-based approaches,

whereby genes are either on the list or they

are not, some enrichment analysis ap-

proaches study the over-representation of

annotations/labels using rank-based statis-

tics. A common choice for rank-based

approaches is to use some variation of the

Kolmogorov-Smirnov non-parametric sta-

tistic, as employed in gene set enrichment

analysis (GSEA) [19]. Another benefit of

rank approaches is that the scores used can

be designed to account for some of the

features that are not well handled by set-

based approaches. Accordingly, consider-

ations of background mutation rates based

on gene length, sequencing quality or

heterogeneity in the initial tumor samples

can be incorporated into the scoring

scheme. However, rank statistics are still

unable to handle other issues, such as

mutations affecting clusters of genes that

are functionally related (e.g., proto-cadher-

ins), which still challenge the assumption

of independence made by most statistical

approaches. Note that from a bioinfor-

matics perspective, sets of entities are often

conceptually simpler to work with than

ranked lists when crossing information

derived from different sources. Moreover,

from an application perspective, informa-

tion summarized in terms of sets of entities

is often more actionable than ranks or scores.

A different type of analysis considers the

relationships between entities based on

their connections in protein interaction

networks. This approach has been used to

measure the proximity of groups of cancer-

related genes and other groups of genes or

functions, by labeling nodes with specific

characteristics (such as roles in biological

pathways or functional classes) [20].

Functional interpretation can therefore

be facilitated by the use of a wide array of

alternative analyses. Different approaches

can potentially uncover hidden functional

implications in genomic data, although the

integration of these results remains a key

challenge.

3.4. Applicable Results: Diagnosis,
Patient Stratification and Drug
Therapies

For clinical applications, the results of

cancer genome analysis need to be trans-

lated into practical advice for clinicians,

providing potential drug therapies, better

tumor classification or early diagnostic

markers. While bioinformatics systems can

support these decisions, it will be up to

expert users to present these findings in the

context of the relevant medical and clinical

information available at any given time. In

the case of our institution’s (CNIO) person-

alized cancer medicine approach, we use

mouse xenografts (also known as ‘avatar’

models) to test the effects of drugs on

tumors prior to considering their potential

to treat patients [4]. In turn, the results of

these xenograft studies are used as a

feedback into the system for future analyses.

Drug-related information and the tools

with which to analyze it is essential for the

analysis of personalized data (some of the

key databases linking known gene variants

to diseases and drugs are listed in Table 2).

Accessing this information and integrating

chemical informatics methodologies into

bioinformatics systems presents new chal-

lenges for bioinformaticians and system

developers.

4. Resources for Genome
Analysis in Cancer

4.1. Databases
Although complex, the data required

for genome analysis can usually be repre-

sented in a tabular format. Tab separated

values (TSV) files are the de facto standard

when sharing database resources. For a

developer, these files have several practical

advantages over other standard formats

popular in computer science (namely

XML): they are easier to read, write and

parse with scripts; they are relatively

succinct; the format is straight-forward

and the contents can be inferred from the

first line of the file, which typically holds

the names of the columns.

Some databases describe entities and

their properties, such as: proteins and the

drugs that target them; germline variations

and the diseases with which they are

associated; or genes along with the factors

that regulate their transcription. Other

databases are repositories of experimental

data, such as the Gene Expression Omnibus

and ArrayExpress, which contain data from

microarray experiments on a wide range of

Table 2. Selection of databases commonly used in our workflows.

Database Entities Properties

Ensembl Genes, proteins, transcripts, regulatory
regions, variants

Genomic positions, relationships between them,
identifiers in different formats, GO terms, PFAM
domains

Entrez Genes, articles Articles for genes, abstracts of articles, links to full text

UniProt Proteins PDBs, known variants

KEGG, Reactome, Biocarta, Gene Ontology Genes Pathways, processes, function, cell location

TFacts Genes Transcription regulation

Barcode Genes Expression by tissue

PINA, HPRD, STRING Proteins Interactions

PharmaGKB Drugs, proteins, variants Drug targets, pharmacogenetics

STITCH, Matador Drugs, proteins Drug targets

Drug clinical trials Investigational drugs Diseases or conditions in they are being tested

GEO, ArrayExpress Genes (microarray probes) Expression values

ICGC, TCGA Cancer Genomes Point mutations, methylation, CNV, structural variants

dbSNP, 1000 genomes Germline variations Association with diseases or conditions

COSMIC Somatic variations Association with cancer types

doi:10.1371/journal.pcbi.1002824.t002
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samples and under a variety of experimental

conditions. For cancer genome studies,

cancer-specific repositories will soon be the

main reference, such as those developed by

the ICGC and TCGA projects. Indeed,

these repositories contain complete geno-

types that offer a perfect opportunity to test

new approaches with real data.

Bioinformaticians know that crossing

information from different sources is not

a trivial task, as different resources use a

variety of identifiers. Even very similar

entities can have different identifiers in two

different databases (e.g., genes in Entrez

and Ensembl). Some resources borrow

identifiers for their own data, along with

HGNC gene symbols, while databases

such as KEGG have their own identifiers

for genes, and offer equivalence tables

that map them to gene symbols or other

common formats.

In addition to entities being referenced

by different identifier formats, in distinct

resources they may also adhere to slightly

different definitions (e.g., regarding what

constitutes a gene). Furthermore, as men-

tioned above the differences between

genome builds can substantially affect the

mapping between coordinate systems, and

they can also give rise to differences

between entities.

In general, translating identifiers can be

cumbersome and incompatibilities may

exist between resources. For example,

MutationAssessor, which predicts the path-

ogenicity of protein mutations [15], uses

UniProt identifiers. Analysis systems using

Ensembl data for coordinate mappings,

such as our own, render mutations using

Ensembl Protein IDs, and in some cases

there are problems in translating identifiers,

and even in assigning mutations to the

wrong isoforms. To prevent these potential

errors, MutationAssessor double checks

that the original amino acid matches the

sequence it is using and refuses to make a

prediction otherwise. Although avoiding

incorrect predictions is a valid strategy, in

practice it substantially reduces the number

of predictions that can be made.

Identifier translation is a very common

task in Bioinformatics in general, and in

cancer genome analysis in particular. In

practice, we use the Ensembl BioMart web

service to download identifier equivalence

tables (in TSV format), which map

different identifier formats between and

across genes, proteins, array probes, etc.

We build fast indexes over these equiva-

lence tables and make them ubiquitously

accessible to all our functionalities through

simple API calls, web services, or com-

mand line statements. While potentially

encumbered by semantic incompatibilities

between entity definitions in multiple

resources, a thoroughly versioned transla-

tion equivalence system is an invaluable

asset for database integration.

4.2. Software Resources
In cancer analysis pipelines, several

tasks must be performed that require

supporting software. These range from

simple database searches to cross-check

lists of germline mutations with lists of

known SNPs, to running complex compu-

tational methods to identify protein-pro-

tein interaction sub-networks affected by

mutations. Some cancer analysis work-

flows opt to develop these functionalities

in-house, while others delegate them to

third party software with the implicit

burdens of installation and configuration.

Table 1 lists some software resources that

are useful when implementing analysis

workflows, and succinctly describes their

functionality and availability.

The functionalities required in a ge-

nome analysis workflow can be divided

into four classes, depending on how they

are accessed (Table 3): via web services,

local or browser based applications, com-

mand line tools, or application program-

ming interfaces (APIs). It is not uncommon

for resources to make their data and

functionalities available in several ways, a

trend that is already evident in databases

like Ensembl, where the information can

be examined using the web interface,

downloaded via the BioMart web service,

batch downloaded from an FTP server, or

queried through the PERL API.

Bioinformaticians should strive to make

their resources widely available to allow

others to use them in the most convenient

manner. In function of the workflow’s

characteristics, some accessibility modes

(e.g., web service, local application, or API)

will be more convenient than others. For

example, if a relatively systematic work-

flow has to be applied to a batch of

datasets, then command-line tools are very

convenient as they are easy to script.

Because a cancer genome analysis pipeline

may require several connected analytical

steps, it is important to be able to script

them to avoid manual operations, thereby

guaranteeing the sustainability and repro-

ducibility of the results. Conversely, if the

user is concerned with the analysis of just

one dataset but interpretation of the results

requires more careful examination, visual

interfaces such as browser-based applica-

tions may be the most convenient end-user

interface, as these can link the results to

knowledge databases to set the context.

5. Workflow Enactment Tools
and Visual Interfaces

Given the complexity of cancer genome

analysis, it is worth discussing how to

design and execute (enact) workflows,

which may become very elaborate. Work-

flows can be thought of as analysis recipes,

whereby each analysis entails enacting

that workflow using new data. Ideally a

workflow should be comprehensive and

cover the complete analysis process from

the raw data to the final results. These

workflows may involve processing different

types of data and may require specific

Table 3. Types of third party software and their general characteristics.

Software type Installation User friendly Scriptable Reusable1

Browser app. NO YES NO2 NO

Web server NO NO YES NO

Local app YES YES NO3 NO

Command line YES NO YES YES4

API YES NO YES YES

1Reusable means that the code, in whole or in part, can be reused for some other purpose.
2May be scriptable using web scraping.
3May support some macro definitions and batch processing.
4If the source code is provided and is easy to pick apart.
doi:10.1371/journal.pcbi.1002824.t003
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adaptations for the analysis of certain types

of experiments. Often, parts of the analysis

will be repeated in a different context and

thus, one of the objectives of workflow

enactment tools is to reuse code efficiently.

A number of systems have been designed

to facilitate the construction of workflows

(e.g., Taverna [21] and Galaxy [22], which

both offer visual interfaces to orchestrate

workflows across a very wide range of

available functionalities).

Although visual workflow enactment

approaches have become reasonably pop-

ular, they still have several important

limitations. Firstly, despite recent efforts,

these approaches remain overly complex

for non-bioinformaticians. Secondly, they

are quite inflexible in terms of the pre-

sentation and exploration of the results,

and thus, understanding the results re-

quires the user to do additional work

outside of the system. Finally, the expres-

siveness of these approaches is limited

when compared with general purpose

programming languages. Experienced de-

velopers will find them of limited utility,

and prefer to have their functionalities

accessible by APIs derived from general

purpose programming languages.

The information presented to the user

needs to closely match his/her needs,

especially in more translational settings.

Too much information may mask impor-

tant conclusions, while too little may leave

the user unsure as to the validity of their

findings. This further emphasizes the need

to customize workflows and the manner in

which results are displayed, in order to

best fit these aspects to the particularities

of each user.

In a more academic setting, close col-

laboration between the researcher and the

bioinformatician facilitates the develop-

ment of custom interfaces that can better

adapt to given datasets, and answer the

very specific questions that may arise

during data exploration. In our institution,

we use a programmatic workflow enact-

ment system that orchestrates a wide

variety of tasks, ranging from coordinate

mapping to enrichment analysis. This

system is controlled via a browser appli-

cation designed to rapidly produce custom

reports using a template-based HTML

report generation system. It is a system

that was developed entirely in-house but

that makes use of third party software,

allowing us to address the requirements of

our collaborators in a timely manner.

6. Summary

Cancer genome analysis involves the

manipulation of large datasets and the

application of complex methods. The

heterogeneity of the data and the disparity

of the software implementations represent

an additional layer of complexity, which

requires the use of systems that can be

easily adapted and reconfigured. Addition-

ally, interpretation of the results in terms

of specific biological questions is more

effective if done in close collaboration

with experts in the field. This represents a

specific challenge for software development

in terms of interactivity and representation

standards. Cancer genome analysis systems

need to be capable of conveniently man-

aging this complexity and of adapting to the

specific characteristics of each analysis.

Finally, it is worth noting that bioinfor-

matics systems will soon have to move

beyond the current research environ-

ments and into clinical settings, a chal-

lenge that will involve more industrial

development that can better cope with

issues of sustainability, robustness and

accreditation, while still incorporating

the latest bioinformatics components that

will continue to be generated in research

laboratories. This constitutes a new and

exciting frontier for bioinformatics soft-

ware developers.

7. Exercise Questions

I. Name three general issues that

bioinformaticians face when ana-

lyzing cancer genome data?

II. What are the four main tasks in

cancer genome analysis in a

clinical setting once the primary

analysis has been performed?

III. Why is it important to use the

correct genome build?

IV. What do we mean by driver

mutation?

V. There are two key principles that

help determine driver mutations

in-silico. What are they?

VI. Give several reasons why point

mutations in coding regions are so

important.

VII. Name three issues that challenge

the assumptions made by the

standard pathway enrichment

analysis tools when applied to

genomic mutations.

VIII. Discuss the problems that arise with

identifiers when integrating infor-

mation across different databases.

IX. Why are command line tools

generally more convenient than

browser-based applications for

processing a batch analyses?

X. How would an application aimed

at researchers differ from one

aimed at clinicians in terms of

the information presented?

Answers to the Exercises can be found

in Text S1.

Supporting Information

Text S1 Answers to Exercises

(DOCX)
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