

Block Forests

Roman Hornung

Introduction

Quick reminder: Splitting in RF

Five potential RF variants for multi-omics data

Comparison study

Further results & Discussion Block Forests: random forests for blocks of clinical and omics covariate data

Roman Hornung¹, Marvin N. Wright^{2,3}

March, 19th, 2019

- ¹ Institute for Medical Information Processing, Biometry and Epidemiology, University of Munich, Germany
- ² Leibniz Institute for Prevention Research and Epidemiology **BIPS**, Bremen, Germany
- ³ Section of Biostatistics, Department of Public Health, University of Copenhagen, Denmark

Introduction

Block Forests

Roman Hornung

Introduction

Quick reminder: Splitting in RF

Five potential RF variants for multi-omics data

Comparison study

Further results & Discussion Last few years: more and more data available that feature omics measurements of several types for the same patients (multi-omics data)

 \Rightarrow New possibility: combine several types of omics data for prediction modeling

Introduction

Block Forests

Roman Hornung

Introduction

Quick reminder: Splitting in RF

Five potential RF variants for multi-omics data

Comparison study

Further results & Discussion Multi-omics data have complex structures...

- Strongly overlapping information between different omics blocks
- Differing levels of predictive information between blocks that depend on the outcome considered
- Interactions between variables from different blocks

The prediction method **Random Forest** (**RF**) **captures complex dependency structures** between outcome and covariates.

 \Rightarrow Goal of the project: Develop RF variant for multi-omics data that exploits the information contained in such data by considering their specific structure.

Quick reminder: Splitting in RF

Block Forests

Roman Hornung

Introduction

Quick reminder: Splitting in RF

Five potential RF variants for multi-omics data

Comparison study

Further results & Discussion

- Each tree decision rule in a RF performs a series of binary decisions, where each decision is obtained using a threshold (split point) in the values of one of the covariates.
- In the construction of a RF, a split point is obtained by first randomly drawing a number 'mtry' (default: \sqrt{p}) of all covariates and second determining that split in the drawn covariates that is best according to a split criterion.

Five potential RF variants for multi-omics data

Block Forests

Roman Hornung

Introduction

Quick reminder: Splitting in RF

Five potential RF variants for multi-omics data

Compariso study

Further results & Discussion

Potential RF variants differ with respect to split selection:

- "VarProb" :
 - **Sample** $\sum_{m=1}^{M} \sqrt{p_m}$ variables, where a variable from block *m* is sampled with probability prob_m.
 - 2 Split according to the highest split-criterion value.
- "SplitWeights":
 - **1** Sample $\sum_{m=1}^{M} \sqrt{p_m}$ variables with equal sampling probabilities.
 - Split according to the highest weighted split-criterion value using block-specific weights w_m (m = 1,..., M, max{w₁,..., w_M} = 1).
- "BlockVarSel":
 - **1** Sample $\sqrt{p_m}$ variables from block m, m = 1, ..., M.
 - 2 Perform step 2 of SplitWeights.

Potential RF variants for multi-omics data

Block Forests

Roman Hornung

Introduction

Quick reminder: Splitting in RF

Five potential RF variants for multi-omics data

Compariso study

Further results & Discussion

"RandomBlock":

- **Sample one block m**^{*} from the *M* blocks, where block *m* has selection probability $\widetilde{prob}_m (\sum_{m=1}^{M} \widetilde{prob}_m = 1)$
- **2** Sample $\sqrt{p_{m^*}}$ variables from block \mathbf{m}^* .
- **3 Split** according to the highest split-criterion value.
- "BlockForest":
 - **1** Sample each block with probability 0.5.
 - Perform steps 1 and 2 of BlockVarSel considering only the sampled blocks.

The **tuning parameter values** are **optimized** on the training data **by** repeatedly considering different candidate values and using the candidate values associated with the **smallest out-of-bag error**.

Comparison study using real multi-omics data sets - Design

Block Forests

Roman Hornung

Introduction

- Quick reminder: Splitting in RF
- Five potential RF variants for multi-omics data

Comparison study

Further results & Discussion

Data:

- 20 data sets with survival outcome downloaded from the The Cancer Genome Atlas (TCGA) database
- Each data set features patients of a different cancer type.
- **Five blocks**: clinical covariates (*p* < 10), copy number variation, methylation, miRNA, mRNA
- Study design:
 - Six compared methods: five RF variants, Random Survival Forest (RSF, reference method)
 - Two settings: 1) "multi-omics case": use all available blocks for each data set; 2) "clinical+RNA case": use only the clinical block and the RNA block.
 - Performance assessment: Harrel's C index values estimated using five times repeated 5-fold cross-validation

Comparison study using real multi-omics data sets - Results: multi-omics case

Block Forests Data set specific ranks 6 4 2 RandonBlock Blockforest REX lock varsel 1atProb SpinNeight Performance differences: BlockForest / RandomBlock – RSF Comparison 0.15 study Method BlockForest 0.10 RandomBlock 0.05 0.00 4SCA URÓ Les Jee The The the beg ever the à the com Å

Comparison study using real multi-omics data sets - Results: clinical+RNA case

Block Forests Data set specific ranks 6 4 2 RandonBlock BlockForest , bock Varsel 13tProf SpitNeight Ś Performance differences: BlockForest / RandomBlock – RSF Comparison study Method 0.10-BlockForest RandomBlock 0.05 0.00 -0.05 READ VCEC BICA HASC LINC Lee The The ever ber con KIRC FSCA STAD CHOM

Further results & Discussion

Block Forests

Roman Hornung

Introduction

Quick reminder: Splitting in RF

Five potential RF variants fo multi-omics data

Comparisor study

Further results & Discussion

- Variant BlockForest significantly better than RF in both settings (paired t test; adjusted P values 0.027 (multi-omics) and 0.010 (clinical+RNA))
- Best methods, BlockForest and RandomBlock, both randomize the block choice - tackle information overlap between the blocks.
- Block-specific weighting in particular important with respect to the clinical block - small number of variables, but high prognostic relevance

Outlook

Block Forests

Roman Hornung

Introduction

- Quick reminder: Splitting in RF
- Five potential RF variants fo multi-omics data
- Comparisor study

Further results & Discussion

- Performances in the clinical+RNA case, in general, slightly better than in the multi-omics case - Using clinical plus RNA information may often be sufficient.
- CRAN/github R package blockForest (fork of RF package ranger): all 5 considered variants for binary, survival, and metric outcome (default variant: "BlockForest").
- Technical Report: Hornung, R., Wright, M. N. (2018). Block Forests: random forests for blocks of clinical and omics covariate data. Technical Report No. 219, Department of Statistics, LMU.

References and thank you for your attention!

Block Forests

Roman Hornung

Introduction

Quick reminder: Splitting in RF

Five potential RF variants fo multi-omics data

Comparisor study

Further results & Discussion

Breiman, L. (2001). Random forests. Machine Learning **45**, 5–32.

Ishwaran, H., Kogalur, U. B., Blackstone, E. H., and Lauer, M. S. (2008). Random survival forests.

The Annals of Applied Statistics 2, 841–860.

Wright, M. N. and Ziegler, A. (2017). ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. *Journal of Statistical Software* 77, 1–17.

Zhao, Q., Shi, X., Xie, Y., Huang, J., Shia, B., and Ma, S. (2015). Combining multidimensional genomic measurements for predicting cancer prognosis: observations from TCGA. *Briefings in Bioinformatics* **16**, 291–303.

Huang, S., Chaudhary, K., and Garmire, L. X. (2017). More is better: Recent progress in multi-omics data integration methods. *Frontiers in Genetics* 8, 84.

TCGA: https://cancergenome.nih.gov

R package: https://github.com/bips-hb/blockForest