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Abstract

Outlying values in predictors often strongly affect the results of statistical analyses in high-dimensional settings.

Although they frequently occur with most high-throughput techniques, the problem is often ignored in the

literature.

We suggest to use a very simple transformation, proposed before in a different context by Royston and

Sauerbrei, as an intermediary step between array normalization and high-level statistical analysis. This straight-

forward univariate transformation identifies extreme values and reduces the influence of outlying values con-

siderably in all further steps of statistical analysis without eliminating the incriminated observation or feature.

The use of the transformation and its effects are demonstrated for diverse univariate and multivariate statistical

analyses using nine publicly available microarray data sets.

R-codes for reproducing the whole analysis are available from the companion website:

http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/020−professuren/boulesteix/outliers/, such that

the study is completely reproducible.

∗Corresponding author. Email: boulesteix@ibe.med.uni-muenchen.de.
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1 Introduction

Preprocessing and normalization of microarray experiments, gene ranking and prediction based on

high-dimensional data have been the subject of thousands of articles in the last decade. Outliers have

comparatively not focused much attention, although they may considerably affect the results of high-

level analyses. In the microarray literature, the term “outlier” most often refers to outlying arrays.

In the context of class prediction, mislabeled arrays are a special type of outliers. Such mislabeled

arrays can be seen as outliers with respect to their class and can easily be detected in the context

of prediction, since they are usually consistently misclassified by standard classification algorithms.

Independently of the investigated class prediction problem, some arrays may yield atypical gene

expression measurements, hence the term “abnormal sample” used in this context by (Shieh and

Hung, 2009). Methods for detecting outlying arrays are suggested by Baty et al. (2008) and Shieh

and Hung (2009).

The problem of outlying values in the predictors is a different one, and probably more difficult

to handle than outlying samples in high-dimensional settings. In the context of differential gene

expression, a few methods have been proposed that allow to identify genes with outlying values. For

instance, Tibshirani and Hastie (2007) suggest the “outlier sum” as a criterion to identify genes with

outlying values in the two-groups setting, e.g. normal versus cancer. The focus of this procedure is

on the identification of genes that have outlying values in one of the two groups (the cancer group in

their example). The criterion is essentially asymmetric, but the examination of outliers on both sides

is possible by interchanging the two groups. However, the approach critically depends on a suitable

threshold. The current proposal to use permutations and estimate false discovery rates for several

thresholds is computer intensive and needs further development and investigations. In addition, it

does not aim at transforming the data for subsequent analyses. In a related approach by Tomlins et al.

(2005a) termed “cancer profile outlier analysis” (COPA), the median of each gene is centered to zero

and the median absolute deviation is scaled to one. For each gene, Tomlins et al. (2005b) suggest to

consider the rth percentile of the disease group’s transformed values (with r = 75%, 90% or 95%)

for identifying genes that are over-expressed in a subgroup of the disease group. Genes with outlying

values can be seen as extreme cases of such genes, with subgroups of size, say, one, two or three. As a

competing approach, Wu (2007) proposes an “outlier robust t-statistic” based on medians with the aim

to efficiently identify outliers or subgroups with outlying values. In Wu’s paper, genes with outlying

values or genes with differentially expressed subgroups are addressed simultaneously. However, both

problems are different in general. While subgroups are often assumed to be “biologically interesting”,

single outlying values may rather be the consequence of undesired events such as measurement error,

technical errors in the lab, or the particular characteristics of a single patient that are not relevant to

the disease. In contrast to the above methods based on test statistics, Haury et al. (2010) suggest to

consider as outliers the values outside a given interval defined in terms of standard deviation.

The standard traditional way to cope with such outliers in multivariate analyses is to detect them
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and eliminate them from the further analyses, as already recommended by Edgeworth (1887) in the

context of least squares regression: “The method of least squares is seen to be our best course when

we have thrown overboard a certain portion of our data – a sort of sacrifice which has often to be

made by those who sail upon the stormy seas of Probability”. The problem is that, in the context of

high-dimensional data analysis, it is most often impossible to “throw overboard” all the observations

that have an outlying value for at least one feature. Doing that, we would eliminate too many if not

all observations.

While the methods reviewed above allow to detect outlying values in individual features, it is

often unclear how we should cope with them in further analyses like feature ranking, multivariate

model building or estimation of correlation graphs. This is an important problem, since such analyses

are well-known to be extremely unstable against small changes in the available data set, see e.g.

Boulesteix and Slawski (2009) for the case of ranked gene lists from univariate analyses.

Robust statistical procedures form the second main family of methods handling outlying values, as

summarized by Rousseeuw and Leroy (2003) in low-dimensional settings. Many statistical methods

can be adapted to achieve robustness against outlying values. However general agreement and clear

guidance are still missing. The field is still in its infancy as far as high-dimensional data are concerned.

A further problem is that robust methods have then to be used at all stages of the analysis, i.e. we

would have to use, say, a robust t-statistic for differential gene expression analysis, a robust prediction

method for multivariate model building, a robust method for the estimation of correlation graphs, etc.

While it may be easy to compute a robust t-statistic, methods addressing the other issues are far less

developed.

In this paper we suggest to use a simple transformation, proposed before in a different context

(Royston and Sauerbrei, 2007), as an intermediary step between array normalization and high-level

statistical analysis. This transformation considerably reduces the influence of outlying values in all

steps of statistical analysis without eliminating the incriminated observation or feature. It can be seen

both as a procedure to detect such outlying values and to transform the data for further analyses.

This manuscript is organized as follows. Section 2 presents the transformation and the method for

outlier detection and gives a brief introduction into the standard methods used to rank genes and build

predictive models. Based on nine real-life microarray data sets, we show in Section 3 that the rank of

a few features may be substantially affected by the transformation and find that these features have

strong outliers. We further examine the impact of outliers and the role of the proposed transformation

on multivariate model selection using two well-known strategies to derive sparse prediction models.

In a nutshell, we show that outlying values may make us overlook interesting features or conversely

lead to the selection of uninteresting features (”false positives”).
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2 Methods

Let Y denote the random variable corresponding to the outcome of interest, for instance a binary class

membership (Y = 0, 1) or a time-to-event with corresponding censoring indicator. The covariates are

denoted asX1, . . . , Xp, where p is typically large. We consider a sample of n independent realizations

of (Y,X1, . . . , Xp), which are denoted as (yi,x′i) with xi = (xi1, . . . , xip)′ and i = 1, . . . , n. For

example, X1, . . . , Xp may be gene expression levels, but our methodology can be directly applied to

other continuous covariates like, e.g., protein expression levels. Furthermore, for binary Y, n0 and n1

denote the number of observations with Y = 0 and Y = 1, respectively.

2.1 Proposed preliminary data transformation

In a completely different context, namely improving robustness of fractional polynomial modelling

in low dimension settings, Royston and Sauerbrei (2007) suggested a simple transformation of the

covariates. The transformed version of xij (for j = 1, . . . , p) is given as

x∗ij =
[
ln
(

φ(zij) + ε

1− φ(zij) + ε

)
+ ε∗

]
/(2ε∗), (1)

where

• φ stands for the standard normal cumulative distribution function,

• zij is simply the standardized form of xij , i.e.

zij = (xij − xj)/sj ,

with xj and sj denoting the sample average and the unbiased standard deviation of covariate

Xj , respectively,

• ε is a parameter and ε∗ = ln[(1 + ε)/ε]. Royston and Sauerbrei (2007) recommend the choice

ε = 0.01. This value is used here.

As can be seen from Eq. (1), the transformation is univariate in the sense that it is performed for

each covariate separately. It is also monotonic (hence rank-invariant) and unsupervised (i.e. it does

not refer to the outcome variable Y ). The transformation x∗ij is constructed to be nearly linear over

the bulk of the observations (more precisely, within about xj ± 2.8sj). It smoothly tapers to zero as

x → −∞ and to one as x → ∞. As an example, the transformation is depicted in Figure 2.1 for

simulated data randomly generated from the normal distribution with mean 7 and standard deviation

1.
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Figure 1: Transformed vs. original data for for a simulated covariate randomly generated from the
normal distribution with µ = 7 and σ = 1.

2.2 Gene ranking

Many microarray studies begin with a univariate gene ranking. For example, the features (genes) are

typically ordered according to the absolute value of the two-sample t-statistic or one of its variants in

the case of a binary Y . Readers are referred to Opgen-Rhein and Strimmer (2007); Boulesteix and

Slawski (2009) for recent overviews on appropriate statistics for measuring differential expression.

When the outcome of interest is a time-to-event with censoring, it is usual to rank the features based

on the p-value of the likelihood-ratio (LR) test in a univariate Cox regression with the considered

feature as a predictor. In the present article, we stick to the p-value of the standard two-sample t-test

for binary Y and to the LR p-value in univariate Cox regression for time-to-event outcomes.

Moreover, in the case of a binary Y we also consider a moderated two-sample t-statistic as sug-

gested in Opgen-Rhein and Strimmer (2007). The modified t-statistic is obtained by replacing the

unbiased variance estimator in the denominator through a biased but more stable shrinkage estimator

defined as the weighted sum of the sample variance and the median of the sample over the p covari-

ates. The weight parameter is chosen to minimize the mean squared error of the resulting estimator.

The obtained “shrinkage t-statistic” is expected to be more robust against outlying values, similar to

related approaches such as Limma (Smyth, 2004).

2.3 Our rank discrepancy measure

We suggest to rank the covariatesX1, . . . , Xp based on the untransformed covariates (xij) i=1,...,n
j=1,...,p

and

based on the transformed data (x∗ij) i=1,...,n
j=1,...,p

. Correspondingly, we obtain two rankings (rj)j=1,...,p

and (r∗j )j=1,...,p, where rj and r∗j are the ranks of covariate Xj based on the untransformed and

transformed data, respectively. For instance, if the p-values from the two-sample test are used as a
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ranking criterion, rj is defined as

rj =
p∑

l=1

I(pl < pj), (2)

where pj denotes the p-value of covariate j and I stands for the indicator function. We propose to

compare the ranks (rj)j=1,...,p and (r∗j )j=1,...,p, for instance using a scatter-plot. Genes with severe

differences in ranks due to outlying values can be identified by computing

∆rj =
(r∗j − rj)

min(rj , r∗j )
(3)

for each feature. With the above definition, a large absolute value of ∆r is obtained both for fea-

tures that rank much better with the transformed data (i.e. potentially interesting features that would

have been overlooked because of the outlying value) and features that rank much better with the

untransformed data (i.e. features that “seem” interesting due to an outlying value but are probably

not so interesting). This criterion is inspired from the Bland-Altman plot proposed to assess agree-

ment between two continuous measurements that would represent r∗j − rj against (r∗j + rj)/2 (Bland

and Altman, 1986). Here we adopt it and replace the denominator by min(rj , r∗j ), as we are mainly

interested in features from the left side of the distributions of rj and r∗j with large difference in ranks.

2.4 Multivariate models

In this paper, we also investigate the impact of the transformation on model selection in multivariate

analyses. The considered multivariate methods are briefly introduced here.

2.4.1 L1-penalized regression

L1-penalized regression, also denoted as lasso, has grown to one of the major prediction methods

in high-dimensional settings including but not limited to survival analysis (Benner et al., 2010). The

lasso is attractive as a regularization method because it simultaneously performs variable selection and

shrinkage: the resulting models are usually (very) sparse, depending on the applied penalty parameter.

In this paper, we use the implementation provided in the package penalized by Goeman (2010). Since

complexity selection is not our primary focus, we successively consider different values of the L1-

penalty λ1 corresponding to signatures of usual size (λ1 = 1, 5, 10, 15, after standardization).

2.4.2 Boosting regression

Boosting regression is an alternative model selection approach which performs well in high-

dimensional data analysis, see Bühlmann and Hothorn (2007) for a recent overview and the R package

mboost (Hothorn and Bühlmann, 2006) for a user-friendly implementation. In this paper, we use the

standard boosting variant with componentwise linear least squares as a base learner and the default

value ν = 0.1 for the shrinkage factor. See the extensive review in Bühlmann and Hothorn (2007) and
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GSE outcome n n0 : n1 Events p Disease Reference
9960 control/sepsis 70 16:54 - 54675 sepsis Tang et al. (2009)
6613 control/Parkinson 105 55:50 - 22283 parkinson Scherzer et al. (2008)

control/tumor 47 22:25 - 22283 colon cancer Ancona et al. (2006)
control/tumor 102 50:52 - 12625 prostate cancer Singh et al. (2002)

2434 relapse/no relapse 286 179:107 - 22283 breast cancer Wang et al. (2005)
1456 overall survival 159 - 29 22283 breast cancer Pawitan et al. (2005)

relapse-free survival 159 40
2603 lung metastasis-free survival 82 - 14 22283 breast cancer Minn et al. (2005)
3494 overall survival 236 - 55 22283 breast cancer Miller et al. (2005)
2990 metastasis-free survival 179 - 40 22283 breast cancer Sotiriou et al. (2006)

Table 1: Summary of the data sets’ characteristics.

the synthetic presentation of this boosting variant in Boulesteix and Hothorn (2010) for more details.

The negative binomial log-likelihood is used as a loss function for binary Y variables, while the loss

function is weighted by the inverse probability of being censored (Hothorn and Bühlmann, 2006) for

time-to-event regression. Since complexity selection is not our primary focus, we successively con-

sider several arbitrary usual values of the number mstop of boosting steps (mstop = 20, 50, 100, 200).

3 Results

3.1 Data and preprocessing

We consider a collection of nine Affymetrix gene expression data sets: five breast cancer data sets and

four other diseases. In four of the data sets, the focus is on a time-to-event outcome, while the variable

of interest is binary in the five other data sets (either diseased/healthy or relapse/no relapse). The raw

data are publicly available as CEL files for all data sets, thus allowing to perform normalization using

different methods – an important criterion for our study. We present the results obtained with all

investigated data sets, not just the most favorable to our method. An overview of the considered data

sets is given in Table 1.

All data sets are normalized using the RMA method as implemented in the standard function

‘justRMA’ from the Bioconductor package affy (Irizarry et al., 2009). The aim of our paper is not

to compare different normalization procedures. However, we also perform additional analyses using

other normalization approaches to make sure that the problem of outlying values identified here is not

specific to RMA. The alternative normalization methods considered here are MAS5 (function ‘mas5’

from affy package) and GCRMA (function ‘justGCRMA’ from affy package). Some results with

these alternative normalization approaches are available in additional files.

The R-codes as well as the pre-processed data sets used in this study are available for the pur-

pose of reproducibility from the companion website (see address in the abstract) as recommended by

Baggerly and Coombes (2009).
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3.2 Comparison of univariate rankings before and after transformation

We compute ∆r as defined in Eq. (3) for each feature in each considered data set and with each

considered criterion. Moreover, having a potential influence on multivariate models in mind, it makes

sense to concentrate on “relevant” features, i.e. features ranked in the top-list based on either trans-

formed or untransformed data. Here, we consider top-lists of length 100, which is a usual choice in

practice – i.e. relevant features are those with rj ≤ 100 or/and r∗j ≤ 100 . The numbers of relevant

features with ∆r > 1, 2, 5 and ∆r < −1,−2,−5 are given in Table 2 for all RMA normalized data

sets. The same analyses performed on MAS5 and GCRMA normalized data sets result in different

numbers, indicating that normalization affects outliers (data not shown). But the figures are in av-

erage similar to those obtained with RMA normalized data sets. In this paper we display only the

results obtained with RMA because it is the most widely used normalization technique in practice

(not because the results look more “favorable” with RMA).

For studies with a binary outcome results are given in the top of Table 2 for the standard t-statistic.

The numbers of features with large absolute values of ∆r are almost the same with the t-statistic and

with the shrinkage t-statistic (data not shown), indicating that the problem of outliers cannot be simply

solved by using a regularized statistic. Note that the transformed covariates have to be rescaled to their

original variance before computing the shrinkage t-statistic, otherwise no shrinkage occurs. It can be

seen from the bottom part of Table 2 that survival data sets have much larger numbers of outliers.

For illustrative purpose, the scatterplots of rj and r∗j are depicted for a data set with many outlying

values (Sotiriou) and a data set without outlying values (Ancona) in Figure 2. The points are all near

the diagonal for the Ancona data set, indicating good agreement between the ranks before and after

transformation. In contrast, a substantial part of the relevant genes from the Sotiriou data set have

severe differences in ranks before and after transformation.

∆r < (−5) < (−2) < (−1) > 1 > 2 > 5
Tang (/106) 0 0 0 0 0 0
Scherzer (/104) 1 1 2 0 0 0
Ancona (/103) 0 0 0 0 0 0
Singh (/106) 0 0 1 0 0 0
Wang (/107) 0 0 3 0 0 0
Pawitan (/109) 1 3 5 1 0 0
“ “ (/108) 1 3 12 4 2 0
Minn (/105) 0 0 0 0 0 0
Miller (/118) 2 8 13 10 5 2
Sotiriou (/114) 6 8 14 9 5 3

Table 2: Top: Number of relevant features (i.e. features with rj ≤ 100 or/and r∗j ≤ 100) with
∆r > 1, 2, 5 and ∆r < −1,−2,−5 based on the two-sample t-statistic for binary Y . Bottom:
Number of relevant features (i.e. features with rj ≤ 100 and/or r∗j ≤ 100) with ∆r > 1, 2, 5 and
∆r < −1,−2,−5 based on the LR p-value in univariate Cox regression for censored Y . The total
number of relevant features (with rj < 100 or/and r∗j < 100) is given in parentheses.
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Figure 2: Scatterplots of rankings for the relevant features obtained from original data sets and trans-
formed data sets with the Sotiriou data (left) and Ancona data (right). Features with rj > 100 or
r∗j > 100 are marked as triangles.
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Figure 3: Boxplot of feature 21161 in control and Parkinson patients (Scherzer data).

Obviously, there are both features with negative and positive ∆r. In other words, there are both

features ranking noticeably better before and after transformation. Hence, after transformation, poten-

tially important features appear at the top of list, although without transformation they may have been

overlooked. Conversely, some features look important only due to outliers and the transformation

allows to identify them as false positives.

To better understand the effect of the transformation and to show its influence, let us consider

graphical representations of the features with large |∆r|. For example, Figure 3 displays the boxplots

of feature 21161 with ∆r = −10.13 found in the Scherzer data set. This feature has rank r∗21161 = 84

based on transformed data but only r21161 = 935 based on the original data. As can be seen from

Figure 3, the distributions of cases and controls are different but an extreme outlying value in the

control group is responsible for the bad rank obtained with untransformed data. Similarly, Figure 4

presents the boxplots of the relevant features with ∆r < (−5) for the concerned survival data sets

Pawitan, Sotiriou and Miller. Obviously, these features contain strong outliers. The ranks of the

corresponding features before and after transformation are displayed in Table 3.
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Figure 4: Boxplots of the relevant feature with the |∆r| > 5 in the survival data sets. Note that the
genes do not have the same scale. However, outliers can clearly be identified.
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∆r feature rj r∗j
Scherzer < (−5) 21161 935 84
Pawitan time to death < (−5) 4773 290 44
Pawitan time to relapse < (−5) 17085 490 79
Miller < (−5) 11313 1463 75

11611 151 10
Miller > 5 2673 5 193

6037 26 316
Sotiriou < (−5) 4415 120 14

11118 281 45
11445 507 62
12863 403 51
13453 373 61
17989 385 63

Sotiriou > 5 5044 27 344
17205 11 69
21593 4 27

Table 3: Ranks before transformation (rj) and after transformation (r∗j ) for the features with
min(rj , r∗j ) ≤ 100 and |∆r| > 5, see Table 2.

3.3 Multivariate prediction models

For boosting regression (top) and lasso (bottom), Table 4 gives the number |X \ Z| of regression

coefficients that are non-zero with untransformed data but zero with transformed data, the number

|Z \X | defined in the same way, and the number |X ∩Z| of regression coefficients that are non-zero

with both transformed and non-transformed data. The “signatures” selected with untransformed and

transformed data show quite large overlap, especially for small numbers of boosting steps. However,

a few features are selected based on transformed data but not based on untransformed data, or vice-

versa. As can be seen from Table 4 the proportion of overlap decreases noticeably with the size of the

signatures, yielding only moderate overlaps in the most complex models for some data sets. On the

whole, multivariate analyses seem more sensitive to outliers than univariate analyses.

4 Discussion

While robust methods are specific to a particular problem and have to be developed for each research

question anew, our preliminary transformation can be used as a single preliminary step to all kinds

of statistical analyses. It identifies outliers and proposes a simple way to handle them. If no extreme

value is identified - as in the univariate approaches in some of the data sets considered - it confirms

that outliers do not seriously influence the univariate ranking of the relevant features. Such a finding

summarizes the assessment for several thousands of features with different types of distributions.

Obviously, this is important to know and increases confidence in the further analyses. In some of
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|X\Z| |Z\X| |X∩Z| |X\Z| |Z\X| |X∩Z| |X\Z| |Z\X| |X∩Z| |X\Z| |Z\X| |X∩Z|
mstop=20 mstop=50 mstop=100 mstop=200

Tang 1 1 13 8 3 20 9 7 29 11 13 41
Scherzer 2 3 15 5 5 26 10 6 41 12 10 53
Ancona 0 0 13 5 4 19 12 9 24 13 16 27
Singh 2 2 6 5 4 16 3 6 22 5 5 27
Wang 3 4 12 3 4 34 11 11 51 21 21 74
Pawitan 2 2 2 3 0 8 4 2 14 5 7 23

0 1 6 1 3 10 3 2 18 9 3 29
Sotiriou 3 0 6 3 2 12 3 1 20 8 8 31
Minn 0 1 3 1 1 8 1 0 12 4 5 15
Miller 0 1 5 3 2 10 8 5 18 19 11 28

λ1 = 15 λ1 = 10 λ1 = 5 λ1 = 1

Tang 0 0 3 0 1 10 3 2 21 6 11 25
Scherzer 1 1 10 2 3 27 9 7 46 16 16 59
Ancona 0 0 2 0 0 6 0 2 14 9 11 22
Singh 0 1 5 1 1 12 0 3 21 8 3 32
Wang 12 11 61 17 16 83 37 35 103 52 57 113
Pawitan 3 5 14 8 14 26 20 21 38 32 27 48

5 4 24 15 12 42 27 33 53 34 42 61
Sotiriou 3 6 23 15 20 41 27 35 59 41 45 58
Minn 0 0 6 2 1 11 5 7 17 13 17 21
Miller 20 17 44 28 25 65 42 51 83 49 58 91

Table 4: The table gives the number |X \Z| of regression coefficients that are non-zero with untrans-
formed data but zero with transformed data, the number |Z \ X | defined the other way around, and
the size |X ∪ Z| of the union. Top: Multivariate model selection with mboost and different numbers
of boosting steps (mmstop = 20, mstop = 50, mmstop = 100, mstop = 200). Bottom: Multivariate
model selection with lasso and different penalty parameters (λ1 = 1, 5, 10, 15).

the data sets of our study (mainly with a survival outcome) outliers often induce the selection of

features that would not have been selected otherwise or conversely lead us to overlook important

features. Ignoring outlying values in statistical analyses could be seen as a simple and common error

(Baggerly and Coombes, 2009). In the context of multivariate prediction differences between results

with and without the transformation are larger. As for the handling of outlying values in general, the

specific implications of differences in results have to be discussed with subject-matter knowledge in

mind. As the transformation is easy to apply, we propose to use it at least as a sensitivity analysis.

This is in line with the proposal in the original paper where the transformation was developed to

improve robustness of fractional polynomial functions (Royston and Sauerbrei 2007).

Another usual way to cope with outlying values in low dimensional settings consists to simply

eliminate from the data set the observations with outlying values. In high-dimensional settings, this

approach may be acceptable for univariate ranking analyses. However, it can often not be applied in

multivariate analyses, because many observations may have outlying values in at least one of the many

features. Excluding these observations would lead to a further reduction of small sample sizes and

may introduce biases. Eliminating the covariates with outlying values would also make poor sense,

since they may be relevant to the investigated problem. Although we restrict to univariate rankings

and prediction models in the Results section of this paper, the transformation is potentially useful
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for all types of high-level analyses. For example, outliers may also affect the results of correlation

networks approaches or clustering.

Of course, one could argue that outlying values may have biological relevance and should not

be switched off. However, they first have to be identified anyway. The transformation with the

corresponding rank discrepancy measure can be used for this purpose. While it could be interesting

to investigate why the considered patient has an outlying value for the considered feature, we claim

that statistical analyses should definitely not be strongly affected by a single (or a few) outlying values.

In this spirit, the proposed transformation makes results more robust without completely eliminating

the incriminated observation or feature. Note that other transformations may show similar effects.

We consider the transformation of Eq. (1) because it is very simple, appropriate for all types of

statistical analyses, and already investigated in a previous article from the related research field of

medical statistics.

Furthermore, there is a potential connection between our transformation and resampling ap-

proaches. Among other advantages, resampling-based analyses may be used to detect outliers (Sauer-

brei and Schumacher, 1992), although this aspect of resampling procedures has not often been ad-

dressed in the literature on high-dimensional data. In a resampling analysis, random subsamples or

bootstrap samples are drawn from the original data sets and the whole analysis (e.g., univariate rank-

ing or model building) is repeated for each subsample/bootstrap sample successively. We carried out

preliminary analyses that suggest that features with very large ∆r or very small ∆r also have more

variable ranks over the resampling iterations in resampling analyses. Roughly, this can be explained

as follows. For example, if bootstrap resampling is performed, a particular outlying value is excluded

from the data set in about 36.8% of the bootstrap iterations. If ∆r is very large for the considered

variable, i.e. if the outlying value has a strong impact on the rank, the ranks obtained when the out-

lying value is excluded strongly differs from the ranks obtained in the other iterations. Moreover, the

effect of an outlier is amplified if it is included in the bootstrap sample more than once, thus yielding

a high variability over the bootstrap iterations. If the problem of outliers is the main motivation to ap-

ply a resampling procedure, our simple transformation may be a valuable and computationally cheap

alternative. However, using the bootstrap in high-dimensional data raises additional issues such as

the choice between resampling with or without replacement (Binder and Schumacher, 2008). More

research is needed to examine the connections between both approaches before a general recommen-

dation can be formulated.

5 Conclusion

We suggest to apply the very simple and computationally cheap transformation previously proposed

by Royston and Sauerbrei (2007) in the context of high-dimensional gene expression data. Together

with the rank discrepancy measure it allows to detect features with outlying values and considerably

reduces their influence in subsequent statistical analyses of all types such as univariate rankings or
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multivariate model selection. By applying this transformation to nine publicly available Affymetrix

microarray data sets, we show that the results of both univariate and multivariate analyses are notice-

ably affected by the presence of single atypical values. Based on transformed data, features that would

have been overlooked otherwise show up in the top-list. Conversely, some features “look relevant” in

the original data set due to a single outlying value, but disappear from the top-list if the strong effect

of the outlying value is switched off via the transformation.

The particularity of our transformation is its simplicity – with several positive consequences.

Firstly, it is able to handle new test data collected later. One simply has to apply Eq. (1) to the new

test observations with the mean and standard deviation estimates from the training set used to do the

transformation. In contrast, most pre-processing methods for microarray data such as RMA cannot

simply be applied to new test observations. In this sense, the simplicity of our transformation is

an important advantage. Secondly, our transformation is not specific to a particular type of data.

While an improved normalization variant could perhaps correctly address outliers in a special case

for a special data type, our transformation is general enough to be directly applied to all types of

(metric) predictors. Thirdly, it is also a secure choice in the sense that it never produces unexpected

results: it does not involve, say, complicated fitting procedures with potential convergence or instable

estimation steps. Last but not least, it can be easily implemented in any statistical software tool in a

few minutes.
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