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(Over-optimism in bioinformatics: an illustration)

1 Overview of linear discriminant analysis

Suppose there are c different classes being indicated by Y ∈ {1, ..., c} and a vector x ∈ Rp of

predictors. Decision theory for classification tells us that for an optimal classification based on x,

we need to know the class posteriors P(Y |x). Suppose fr is the conditional density of x in class

Y = r, and let us denote πr as the prior probability of class r, with

c∑
r=1

πr = 1.

The application of the Bayes theorem leads to

P(Y = r|x) =
fr(x)πr∑c
j=1 πjfj(x)

, (1)

for a particular vector x = (x1, ..., xp)
>.

The quantities fr and πr are needed to obtain P(Y = r|x). In linear and quadratic discriminant

analysis fr is modeled as a multivariate normal density (for r = 1, . . . , c), i.e.

x|(Y = r) ∼ N (µr,Σr) (2)

i.e. fr(x) =
1

(2π)p/2|Σr|1/2
e

1
2

(x−µr)>Σ−1
r (x−µr), (3)

with Σr denoting the covariance matrix and µr the mean in class r. Linear discriminant analysis

(LDA) arises in the special case when we assume that the classes have a common covariance

matrix Σr = Σ, for r = 1, . . . , c. To compare the posterior probability of two classes r and l, we

can look at their log-ratio and obtain after a short calculation

log
(
P(Y = r|x)

P(Y = l|x)

)
= log

(
πr
πl

)
− 1

2
(µr + µl)

>Σ−1(µr − µl) + x>Σ−1(µr − µl), (4)

which is linear in x, hence the term “linear discriminant analysis”. As can be seen from the

previous equation, the discriminant function can be formulated as

dr(x) = x>Σ−1µr −
1

2
µ>r Σ−1µr + log(πr), (5)
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where a new observation x∗ is assigned to class r̃ if

r̃ = argmax
r=1,...,c

dr(x
∗). (6)

In practice, to build discriminant functions we need to estimate the parameters of the multivariate

distributions from a finite sample (xi., yi)i=1,...,n. The parameters are usually estimated as follows.

• π̂r = nr
n where nr is the number of observations with yi = r

• µ̂r = 1
nr

∑
i:yi=r

xi.

• S̃ = 1
n−c

∑c
r=1

∑
i:yi=r

(xi. − µ̂r)(xi. − µ̂r)
> = 1

n−c
∑c

r=1(nr − 1)Sr.

The p×pmatrix S̃ is usually referred to as the pooled empirical covariance matrix that can be writ-

ten as a weighted sum of the p × p standard unbiased empirical within-class covariance matrices

Sr, r = 1, ..., c. The LDA now can be applied in a straightforward way in the p� n case (i.e. the

number p of predictor variables does not exceed the number n of observations). However, in the

high-dimensional setting the covariance estimator S̃ from above is singular, thus not invertible.

The concept of regularized linear discriminant analysis (RLDA) aims at solving the singularity

problem by modifying S̃ such that the resulting estimator becomes well-conditioned. For details

we recommend Friedman’s seminal work on regularized (Fisher’s) discriminant analysis [1] and

the shrunken centroids regularized discriminant analysis (SCRDA) by Guo et al. [2] which both

are based on the widely employed shrinkage principle.

Furthermore, an increasingly popular approach is to regularize the within-class covariance

by incorporating external biological knowledge on gene functions from databases like the Kyoto

Encyclopedia of Genes and Genomes (KEGG) [3]. The motivation behind is to improve both the

prediction accuracy and the results’ interpretability. Within the scope of current scientific focus,

we propose a further variant of RLDA incorporating biological knowledge on gene functional

groups. An outline of our idea elaborated in [4] is given in 2 and 5, respectively.

2 The shrinkage estimator Σ̂SHIP

Starting from the methodological challenges arising from the n � p data situation, we now pro-

pose a covariance estimation procedure we refer to as SHIP: SHrinking and Incorporating Prior

knowledge. The resulting covariance estimator Σ̂SHIP is based on the shrinkage estimator intro-

duced by Ledoit and Wolf [5, 6, 7] and applied by Schäfer and Strimmer in the context of genomic

data [8, 9]. Additionally, the new estimator incorporates prior biological knowledge on gene func-

tional groups extracted from the database KEGG. Note that we first refer to a standard framework.

The generalization to the special case of LDA requiring a pooled covariance estimator is discussed

in 5.

In a nutshell, the shrinkage estimator originally proposed by Ledoit and Wolf is the asymptot-

ically optimal convex linear combination Σ̂∗ = λT + (1−λ)S, where λ ∈ [0, 1] denotes the ana-

lytically determined optimal shrinkage intensity with which the structured (i.e. low-dimensional)
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covariance target T = (tij) is shrunken towards the unstructured (i.e. high-dimensional) standard

unbiased empirical covariance matrix S = (sij), i, j = 1, ..., p. In this way, both the singularity

problem is resolved and the covariance estimator is stabilized. Moreover, optimality is meant with

respect to a quadratic loss function which is common and intuitive in statistical decision theory

[10]. For details on the less intuitive asymptotic result we refer to Ledoit and Wolf.

Apparently, the concrete form of both the covariance target T and the optimal shrinkage in-

tensity λ is unclear yet. We discuss these aspects below. Once T is chosen and λ is computed,

some of the shrinkage estimator’s nice properties are: (i) It is more efficient and more accurate

than the empirical covariance matrix. (ii) It is positive definite and invertible which are crucial

properties with regard to the estimation of the inverse of the true covariance matrix. (iii) It has

guaranteed minimum mean squared error (MSE) resulting from the quadratic loss function [10].

(iv) It does not assume any fully specified distribution since merely second moments are required.

These properties similarly hold for Σ̂SHIP since Σ̂∗ and Σ̂SHIP only differ in terms of a covariance

target T which - if suitably chosen - does not affect the properties from above.

3 Choice of the covariance target T

The covariance target T plays an essential role in the computation of the shrinkage estimator Σ̂SHIP.

Its choice, however, turns out to be very complex. On the one hand, T is required to be positive

definite and to involve only a small number of free parameters. On the other hand, it should reflect

important characteristics of the covariance structure between the variables (genes). An overview

of commonly used covariance targets A to F is given in Schäfer and Strimmer [8]. In this paper,

we deal with targets D and F (see Table 1).

Note that biological knowledge on gene functional groups has not been considered so far. To

incorporate the latter from KEGG PATHWAY, we propose a modified version of target F where

genes that are biologically connected have constant correlation r̄. Hence, in order to obtain r̄

we just account for the correlations between genes having at least one gene functional group in

common. The resulting target G is defined in Table 1 (see below). In case a gene does not occur in

any gene functional group, we assume this gene forming its own group with group size one which

corresponds to Tai and Pan [11].

Unlike the diagonal target D both target F and target G do not necessarily fulfill the positive

definiteness requirement. Hence, the resulting shrinkage estimator is not automatically positive

definite unless target D is employed. A strategy to overcome this problem is computing the inverse

by means of the “Moore-Penrose pseudoinverse” ; which can be applied to singular matrices and is

based on the singular value decomposition [12]. The computation can be done using the function

pseudoinverse() implemented in the open source R package corpcor.
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Target D Target F Target G

tij =

{
sii if i = j

0 if i 6= j
tij =

{
sii if i = j

r̄
√
siisjj if i 6= j

tij =


sii if i = j

r̄
√
siisjj if i 6= j, i ∼ j

0 otherwise

Table 1: Overview of targets D (“diagonal, unequal variance”), F (“constant correlation”) and G,
where r̄ is the average of sample correlations. The notation i ∼ j means that genes i and j are
connected, i.e. genes i and j occur in the same gene functional group.

4 The optimal shrinkage intensity λ

Having studied the choice of the covariance target T, we now address the selection of the optimal

shrinkage intensity λ ∈ [0, 1]. In contrast to common approaches that are based on cross-validation

[1], Markov Chain Monte Carlo (MCMC) or the bootstrap [13], Ledoit and Wolf propose an ana-

lytical determination of λ with its distinct advantage being the considerably lower computational

effort. A detailed analytical derivation of λ including the theoretical background is given in [5, 8].

Nevertheless, the calculation of λ is not straightforward since it depends on the unobservable true

covariance matrix. For the sake of convenience, let us continue with the formula for the estimated

λ given in Schäfer and Strimmer [8]. It holds

λ̂ =

∑p
i=1

∑p
j=1 V̂ ar(sij)− Ĉov(tij , sij)∑p
i=1

∑p
j=1(tij − sij)2

.

Since in finite samples λ̂ /∈ [0, 1] may occur, we truncate the estimated shrinkage intensity as

λ̂ ← max(0,min(1, λ̂)). In order to compute the estimator λ̂ of the optimal shrinkage intensity,

it is necessary to estimate the components of the given formula which in particular are V̂ ar(sij)

and Ĉov(tij , sij). Let xki be the k-th observation of the variable (gene) xi and x̄i = 1
n

∑n
k=1 xki

its empirical mean. Now set wkij = (xki − x̄i)(xkj − x̄j) and w̄ij = 1
n

∑n
k=1wkij . Tedious

calculations then yield the target-specific formulae for λ̂ given below in Table 2.

λ̂D =
∑

i6=j V̂ ar(sij)∑
i6=j s

2
ij

λ̂F =
∑

i 6=j V̂ ar(sij)−r̄fij∑
i6=j(sij−r̄

√
siisjj)2

λ̂G =
∑

i6=j V̂ ar(sij)−
∑

i∼j r̄fij∑
i6=j(sij−I(i∼j)r̄√siisjj)2

Table 2: Overview of the target-specific estimators of the optimal shrinkage intensity, where
V̂ ar(sij) = n

(n−1)3

∑n
k=1(wkij − w̄ij)

2, Ĉov(sij , slm) = n
(n−1)3

∑n
k=1(wkij − w̄ij)(wklm − w̄lm) and

fij = 1
2{
√

sjj
sii
Ĉov(sii, sij) +

√
sii
sjj
Ĉov(sjj , sij)}. I(·) denotes the indicator function.

In case a covariance target only shrinks the off-diagonal elements of S and leaves the diagonal

elements intact (e.g. targets D, F and G) we follow the suggestions of Schäfer and Strimmer and

parameterize the covariance matrix in terms of variances and correlations rather than in variances

and covariances, i.e. σij = rij
√
σiiσjj . Then shrinkage is applied to the correlations. This

procedure has the advantage that the off-diagonal elements determining the shrinkage intensity
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are all at the same scale. The modified estimator of λ can thus be formulated by replacing all

covariances by their corresponding correlations. For the purpose of computation, V̂ ar(rij) can

be obtained by applying the formula for V̂ ar(sij) to the standardized data matrix. Analogously,

applying the formula for Ĉov(sij , slm) to the standardized data matrix yields the desired estimator

Ĉov(rij , rlm).

5 Linear discriminant analysis using Σ̂SHIP

So far, we have dealt with Σ̂SHIP under the assumption that the observations come from one ho-

mogeneous population. Within the scope of LDA, however, where the predictor vectors fall into

groups or classes, the previous procedure cannot be directly applied. Here, we briefly sketch how

the idea of the shrinkage estimator from 2 can technically be included into the framework of LDA.

In a nutshell, we compute the shrinkage estimators Σ̂
(r)
SHIP separately for each class r = 1, ..., c and

subsequently pool these within-class shrinkage estimators according to the standard procedure

known from LDA. We obtain

Σ̂∗SHIP =
1

n− c

c∑
r=1

(nr − 1)Σ̂
(r)
SHIP,

following the classical definition of the pooled covariance matrix.

6 Data sets

We analyze the four following real-life microarray data sets: two leukemia data sets CLL and

Golub included in the packages ‘CLL’ [14] and ‘golubEsets’ [15], respectively, a breast cancer

data set Wang by [16] and the prostate data set Singh by [17]. We preprocessed the two latter

data sets ourselves with the GCRMA method using the raw data available from GEO. All data sets

include a binary outcome variable which has to predicted based on gene expression data. A brief

overview of the data sets’ characteristics is given in Table 3.

Data set n n1 : n2 Classes p Raw data avail. Collection Normalization
CLL 22 14:8 proges. vs. stable 12 625 No hgu95av2 GCRMA
Golub 72 47:25 ALL vs. AML 7 129 No hu6800 MAS5
Singh 102 52:50 normal vs. tumor 12 625 Yes hgu95av2 GCRMA
Wang 286 179:107 rel. vs. no rel. 22 283 Yes hgu133a GCRMA

Table 3: Overview of the four data sets’ characteristics.
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