
Anne-Laure Boulesteix · Athanassios
Kondylis · Nicole Krämer
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Svitlana Tyekucheva and Francesca Chiaromonte provide an attractive
solution to the problem of the estimation of the inverse covariance matrix
with high-dimensional data and small samples, which is an important chal-
lenge in modern bioinformatics.

1 Optimizing the noise parameter

Our first comment is on the optimization of the model parameter τ con-
trolling the amount of noise in the augmented bootstrap method. In a su-
pervised prediction problem, τ can and should be optimized using, e.g., a
cross-validation (CV) procedure, as suggested by the authors. If the predic-
tion accuracy is itself evaluated by cross-validation or a related approach, this
yields a nested cross-validation procedure involving an inner-loop (in which
the parameter is tuned) and an outer-loop (in which the prediction rule with
tuned parameter is evaluated), see Statnikov et al (2005) and Boulesteix
(2007). Note that different cross-validation schemes can yield different re-
sults due to, e.g., the difference in the size of the considered training subsets.
In leave-one-out cross-validation, the training subsets have size n−1, whereas
they have size n/2 in 2-fold cross-validation. In the case considered here, it
is conceivable that cross-validation schemes with many folds (i.e. with large
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training subsets) yield smaller optimal values of τ (i.e. less noise) than cross-
validation schemes with less folds, as indirectly suggested by Tyekucheva and
Chiaromonte in the right panel of Figure 1.

Cross-validation is a standard procedure for tuning parameters in super-
vised problems. For example, it may be used to optimize the model parameter
u of the method by Cook et al (2007). In general, an optimized parameter is
expected to yield better performance than a parameter value fixed without
consideration of the data, but the obtained accuracy may be worse than if
the parameter value is chosen optimally a posteriori, i.e. without inner cross-
validation. In the case of an unsupervised problem such as the estimation of
the partial correlation matrix (Schäfer and Strimmer, 2005), the choice of the
“best” τ is a more difficult and hazardous task. As suggested by Figure 1, the
estimation accuracy may depend heavily on τ . The classical cross-validation
procedure can not be applied here. Since the value of the optimal τ is ex-
pected to depend, among others, on the covariances to be estimated, we have
in a way to do with a chicken and egg paradox.

One option is to turn this unsupervised problem into p supervised prob-
lems by successively considering each of the p variables as a response to be
predicted by regression based on the p−1 remaining variables. This approach
is related to the regression-based estimation of partial correlation coefficients.
For the i-th variable, the ordinary least squares estimator of the regression
coefficients is given as (XT

−iX−i)
+XT

−iXi. For each of these linear regres-
sions, the term (XT

−iX−i)
+ can be replaced by the result of the augmented

bootstrap procedure, using different values of τ successively. One can then
select the value of τ minimizing the mean squared prediction error over the
p regressions in cross-validation settings. This approach, though probably
suboptimal and computationally intensive, could at least give a valuable ap-
proximation of the optimal τ value to be used in the unsupervised problem.

2 Bootstrap

The second point that we would like to discuss is the comparison between
bootstrap samples of size n drawn with replacement and subsamples of size
< n drawn without replacement. Bickel and Ren (2001) point out that boot-
strap hypothesis testing fails when performed based on bootstrap samples.
As outlined by Strobl et al (2007), the use of bootstrap samples also poten-
tially leads to substantial biases when used for variable selection or for the
calculation of variable importance measures in random forests. Hence, Strobl
et al (2007) recommend drawing subsamples rather than bootstrap samples
when building a random forest. In the same vein, Binder and Schumacher
(2007) show that complexity selection in bootstrap samples drawn with re-
placement is biased towards more complex models in many settings. It would
be interesing to check whether similar biases occur in the situation consid-
ered by Tyekucheva and Chiaromonte, where bootstrap samples are used for
estimation. In case they occur, one could consider data sets composed of m
noised versions of the original sample instead of noised bootstrap samples.
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3 The CLC approach for supervised problems

The following comments refer to the approximation of the solution of

Σx = ν (1)

in terms of matrix-vector multiplications of the form Σiν (Cook et al, 2007).
As the authors point out, this method is similar to Partial Least Squares
(PLS) (Wold, 1975). We would like to briefly clarify this connection, which is
established via the conjugate gradient (cg) algorithm (Hestenes and Stiefel,
1952). It follows directly from Eq. (9) in the paper by Tyekucheva and
Chiaromonte that the method proposed by Cook et al (2007) is equivalent
to the cg method, a classical approach in numerical linear algebra. It is an
iterative procedure to compute approximate solutions of linear equations by
minimizing the loss function xT Σx−2νT x on the Krylov subspace of dimen-
sion m spanned by the vectors Σiν for i = 0, . . . ,m − 1. The relationship
between Krylov spaces and PLS is already outlined in Helland (1988) and
Helland (1990), and it can be shown that the solution of PLS regression (with
m components) equals the approximate solution of Eq. (1) found via cg after
m iterations, with Σ denoting the sample covariance matrix and ν denoting
the vector of sample cross-covariance between the predictor variables and the
response variable.

When the response is binary, SIR sets the term ν to the difference of
the two sample class means modulo normalization, which equals the cross-
covariance between the predictor variables and the response variable up to
the weighting of the class means. Hence, PLS is almost equivalent to the CLC
approach by Cook et al (2007) outlined in Eq. (9) in the case of a binary
response, and even perfectly equivalent if the two classes are equally sized.
Note that the optimization criterion for PLS is usually modified in the case
of multiple class prediction (Barker and Rayens, 2003; Rosipal and Krämer,
2006), which leads to orthogonal PLS.

Although commonly used in numerical linear algebra, the cg approach
is not well-known as a statistical tool. However, we strongly believe that
transferring these methods into a statistical framework will enrich the field
of data analysis for very high dimensional data, and we truly appreciate
the contribution of the authors to this field. The merits of cg as a regular-
ized estimation technique have been exploited for statistical analysis only
recently. For instance, Ide and Tsuda (2007) use Krylov subspace learning
for change point detection. Krämer et al (2007) introduce penalized PLS
and relate it to a preconditioned conjugate gradient method. Kondylis and
Whittaker (2007) set up spectral preconditioners in order to combine Prin-
cipal Component Analysis and PLS in a unified statistical framework, and
use preconditioned conjugate gradients to improve prediction and dimen-
sionality reduction. The penalization/preconditioning approach might also
be applied to the analysis of high-dimensional data with a functional struc-
ture. As pointed out in Krämer et al (2007), PLS with a penalization term
is equivalent to solving the normal equation with a preconditioning matrix
that is defined as M = (I + P )−1, where P denotes a penalty matrix. This
approach might also be beneficial for the classification task discussed in the
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paper by Tyekucheva and Chiaromonte if the data have a longitudinal or a
time structure.

We conclude with a comment regarding the implementation of the pro-
posed method. For high-dimensional data, the size of the linear equations
(1) is huge, since the dimension equals the number of variables. The matrix-
vector multiplications Σiν scale quadratically with the number of variables,
leading to heavy computations, as noted by the authors. Note however that
we can apply the kernel trick (Schölkopf et al, 1998) to solve this problem.
In a nutshell, we use the fact that the (approximate) solution of Eq. (1)
is a linear combination of the n observations. We can then derive the dual
representation of Eq. (1), which is a linear equation involving the n× n ker-
nel matrix of pairwise inner products between observations. This leads to a
so-called kernel representation of Eq. (1) and a kernel representation of the
algorithm proposed by Cook et al (2007). Since it scales with the number of
observations, which is typically much smaller than the number of variables,
the kernel trick can reduce the computation time dramatically. In the context
of the proposed cg method (Cook et al, 2007), this leads to two alternatives.
We can either use the conjugate gradient algorithm for the dual represen-
tation of Eq. (1) or the kernel representation of the initial algorithm, which
both scale quadratically with respect to n. Note that these two approaches
are different (Krämer and Braun, 2007).
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