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Abstract

Emerging patterns represent a class of interaction structures which has been recently proposed
as a tool in data mining. A new and more general definition referring to underlying probabilities is
proposed. The defined interaction patterns (IP) carry information about the relevance of combinations
of variables for distinguishing between classes. Since they are formally quite similar to the leaves of
a classification tree, a fast and simple method which is based on the CART algorithm is proposed to
find the corresponding empirical patterns in data sets. In simulations, it can be shown that the method
is quite effective in identifying patterns. In addition, the detected patterns can be used to define new
variables for classification. Thus, a simple scheme to use the patterns to improve the performance
of classification procedures is proposed. The method may also be seen as a scheme to improve the
performance of CARTs concerning the identification of IP as well as the accuracy of prediction.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In classification interaction structures among predictors may be used explicitly or im-
plicitly. In linear discriminant analysis or logistic regression a familiar way to exploit in-
teractions is the incorporation of interaction terms into the linear predictor. Nonparametric
classifiers like nearest neighborhood classifiers do not specify the interaction structure
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explicitly but rely on its implicit use. Tree based methods like CARTs (classification and
regression trees, registered trademark by Salford Systems) as suggested byBreiman et al.
(1984)make interaction structures the central issue. The same holds for early versions of
trees, where the detection of interaction structures gave the algorithm its name, i.e. AID for
automatic interaction detection (Morgan and Sonquist, 1963). More recently, specific inter-
action structures called emerging patterns have been introduced byDong and Li (1999)and
applied to high-dimensional gene expression analysis inLi andWong (2003).An alternative
concept which is related to interactions is the search for boxes in the feature space in which
the response variable has a particular distribution. Bump hunting as suggested byFriedman
and Fisher (1999)is a method to seek boxes in which the response is as high as possible. A
short overview on bump hunting is given inHastie et al. (2001). In the following we will
consider simple interaction structures of the emerging pattern type which have the form{

x1> �1
} ∩ {

x2��2
} ∩ · · · ∩ {

xd > �d
}
,

wherex1, . . . , xd arecovariatesand�1, . . . , �d are thresholds tobeestimated.An interaction
structure of this type will be called an interaction pattern (IP). For simplicity, it will be
abbreviated byP. Emerging patterns as considered byDong and Li (1999)are IPs which
discriminate between two classes in a specific sense. LetxT = (

x1, . . . , xp
)

denote the
random vector of covariates andY the class indicator which can take the values 1 and 2.
LetnP,j denote the number of observations from classj in P. According to the definition of
Dong and Li (1999), a patternP is a�-emerging pattern from classi to classj if the growth
rate fromi to j GRij is larger than�, whereGRij is defined as

GRij (P )= nP,j /nj

nP,i/ni
.

The definition is based on a heuristic rather than a statistical criterion. The focus inDong and
Li (1999)is on data mining and therefore on algorithms that find all the�-emerging patterns
without regard to relevance. The problem of overfitting is neglected. By investigating a large
number of possible patterns, it is always possible to find a large growth rate in the training
data, but in an independent test data set, growth rates are usually much lower. Another
drawback of Dong and Li’s patterns is that the definition is restricted to the caseK = 2.

In this paper, we suggest a more general definition of IPs which is based on the underlying
probability and allows for more than two classes. In addition, a CART-based method is
proposed to identify statistically relevant interactions in cases where many variables are
potential candidates. In gene expression data where the expression levels of thousands of
genes aremeasured simultaneously the challenge is the number of predictors. The objectives
of ourapproachare identificationof IPsaswell as their use in classification. In themicroarray
framework, the detection of interactions aims at the analysis of gene expression profiles to
uncover how combinations of genes are linked to specific diseases. The classification part
aims at the improvement of classification rules.

Two main papers address the problem of the discovery of emerging patterns.WhileDong
and Li (1999)focus on an enumeration based algorithm to find all patterns with large
empirical growth rates,Boulesteix et al. (2003)propose a CART-based method. Here, we
suggest an improvement of the CART-based method developed inBoulesteix et al. (2003).
The method allows to identify candidate patterns and only those which satisfy a statistical



A.-L. Boulesteix, G. Tutz / Computational Statistics & Data Analysis 50 (2006) 783–802 785

criterion are selected as IPs. In addition, a pruning criterion is used to prevent too long
and irrelevant IPs. A simpler version of the algorithm which is restricted to the case of two
classes is given inBoulesteix et al. (2003). The present paper can be seen as an extension
of Boulesteix et al. (2003)with respect to three important issues. First, the concept of
IPs is mapped into a theoretical statistical framework. Second, various statistical aspects
of IPs are investigated (e.g. receiver operating characteristic, length of the IPs, survival
plot). Third, the concept of IPs as well as the discovering algorithm are adapted to handle
multicategorical response variables: all the variables involved in the patterns are tested for
relevance (not only the variable involved in the last splitting, as inBoulesteix et al., 2003).

The rest of the paper is organized as follows. In Section 2, we define IPs. In Section 3,
we present the discovering method and algorithm to find IPs in data. Section 4 presents the
results of the method for simulated data. In Section 5, we show how IPs can be used for
classification and show the results obtained for very large data sets.

2. Definition of IPs

2.1. IPs for two classes

In this section, we first consider the binary case. For simplicity, the variablesx1, . . . , xp
are assumed to be metric, although the method is easily generalized to categorical variables.
A pattern may be characterized as a collection of restrictions on a subset of variables
xj1, . . . , xjd . The restrictions have the simple formxj��j or xj > �j . Let Ij denote an
interval of this type, then the restrictions are collected in

xj1 ∈ I1, . . . , xjd ∈ Id .

More formally, the restrictions may be represented as a subset of the observation spaceRp

or in terms of the underlying event. As subset ofRp they are given by

{
x|xj1 ∈ I1

} ∩ · · · ∩ {
x|xjd ∈ Id

}
.

For random variablesx1, . . . , xp the underlying event for patternP is given by

P = Aj1 ∩ · · · ∩ Ajd ,

whereAs = {�|xs(�) ∈ Is}. The patternP may be simply identified by the sequence of
variables and corresponding intervals{(js, Is), s = 1, . . . , d}, whered is the order of the
pattern. In addition, letP\j denote the pattern where the restriction for variablej is omitted,
i.e.

P\j =
⋂

i∈{j1,...,jd }\{j}
Ai.

The original pattern is easily obtained byP = P\j ∩ Aj .
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Definition 1. IPs for two classes
For�>1,P is called a�-IP for classk0 if

p(P |Y = k0)
p(P |Y 
= k0) > � (2.1)

and for allj ∈ {j1, . . . , jd} the condition

p
(
P\j |Y = k0

)
p

(
P\j |Y 
= k0

) < p(P |Y = k0)
p(P |Y 
= k0) (2.2)

holds.

In simplewords, an IP is a condition on a collection of covariates forwhich the probability
of occurrence is larger in one of the classes (Eq. (2.1)) and such that every involved covariate
actually contributes to the ratio between the probabilities of occurrence within classes (Eq.
(2.2)). Theprobabilities involved in thedefinition are unknown.Therefore, givena candidate
patternP, the data are used to decide if it is an IP fulfilling Eqs. (2.1) and (2.2). One option
is to base the decision on a statistical test. For fixedk0, condition (2.1) may be investigated
by testing the hypothesis

H(1)0 : p(P |Y = k0)�p(P |Y 
= k0).
For simplicity� = 1 is used. Then testing of H(1)0 is equivalent to one-sided independence
testing in the following(2 × 2) contingency table with rows given by presence or non-
presence of patternP and columns defined by the classes.

Y = k0 Y 
= k0
P nP,k0 nP,k0 nP

P nP,k0 nP,k0 nP

In the contingency tablePstands for presence of a specific patternPandP =Rp\P denotes
the non-presence ofP. One can use for instance Fisher’s exact test, which allows one-sided
testing and is also valid for small numbers of observations. An overview on independence
testing in contingency tables is given inAgresti (2002). The hypothesis H(1)0 is rejected
by the chosen independence test (for instance Fisher’s test) to the significance level�1 if
p(1) < �1, wherep(1) denotes thep-value obtained by testing of H(1)0 .P is selected as an IP
only if p(1) < �1 holds. For the investigation of condition (2.2) it is useful to reformulate
the condition. Since

p
(
P\j |Y = k0

)
p

(
P\j |Y 
= k0

) < p (P |Y = k0)
p (P |Y 
= k0)

is equivalent to

p
(
P\j ∩ Aj |Y = k0

)
p

(
P\j ∩ Aj |Y 
= k0

) < p(P |Y = k0)
p(P |Y 
= k0) (2.3)
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condition (2.2) may be investigated by one-sided independence testing in the following
contingency table:

Y = k0 Y 
= k0
P = P\j ∩ Aj n

(j)
A,k0

n
(j)

A,k0
nP

P\j ∩ Aj n
(j)

A,k0
n
(j)

A,k0
nP\j − nP

Let �(j) denote the associated odds ratio

�(j) = p (P ∩ {Y = k0}) /p (P ∩ {Y 
= k0})
p

(
P\j ∩ Aj ∩ {Y = k0}

)
/p

(
P\j ∩ Aj ∩ {Y 
= k0}

) .
Then, condition (2.3) can be reformulated as�(j) >1. To investigate condition (2.3), one
has to test for allj the hypothesis

H(2,j)0 : �(j) = 1 vs. H(2,j)1 : �(j) >1.

An option is to use Fisher’s one-sided independence test again. The hypothesis H(2,j)
0 is

rejected by the chosen independence test to the significance level�2 if p(2,j) < �2, where
p(2,j) denotes thep-value obtained by testing of H(2,j)0 . P is selected as an IP only if

maxj p(2,j) < �2 holds, i.e. for allj ∈ {j1, . . . , jd}, H(2,j)0 has to be rejected.
The number of involved variables represents the order of the IP and is denoted byd.

Patterns of order 1 are explicitly allowed. In the following, empirical IPs are simply denoted
as IPs. The connection to emerging patterns is easily derived. In the emerging pattern
literature which uses terminology from data mining the support is defined bysuppk(P )=
nP,k/nk. This is an unbiased estimate of the probabilityp(P |Y =k). The crucial difference
between the present approach and the emerging pattern approach in data mining is that
in the latter approach growth rates are simple descriptive tools and only condition (2.1) is
investigated.

2.2. Generalization to multicategorical response

In practice, categorical variablesoftenhavemore than twopossible classes. In this section,
we address the problem of multicategorical responses (K >2) and propose a generalization
of the definition of IPs.

Definition 2. IP for more than two classes
For�>1,P is called a�-IP for the classk0 if

p (P |Y = k0)
p (P |Y = k) > � (2.4)

holds for allk and for allj from {j1, . . . , jd} one has

p
(
P\j |Y = k0

)
p

(
P\j |Y 
= k0

) < p (P |Y = k0)
p (P |Y 
= k0) . (2.5)
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For fixedk0, condition (2.4) may be investigated by testing the hypotheses

H(1,k)0 : p(P |Y = k0)�p(P |Y = k)

for all k 
= k0. The hypothesis H(1,k)0 is rejected by the chosen independence test (for
instance Fisher’s test) to the significance level�1 if p(1,k) < �1, wherep(1,k) denotes thep-
value obtained by testing of H(1,k)0 . For fixed�1,P is selected as an IP if maxk 
=k0 p(1,k) < �1
holds.

Condition (2.5) can be investigated using the same procedure as for IPs for two classes.

3. Discovering IPs with trees

IPs and single leaves of classification trees have similar structures and properties. Thus,
we propose to use the well-known and fast CART-algorithm proposed inBreiman et al.
(1984)to discover IPs.

3.1. Tree methodology

Classification trees are an efficient exploratory tool to detect structures in data (Breiman
et al., 1984). They are based on recursive partitioning whereby the measurement spaceRp is
successively split into subsets. LetxT = (

x1, . . . , xp
) ∈ Rp denote the vector of covariates.

If C is a subset ofRp (corresponding to the partitioning ofRp intoC andC = Rp\C), the
split ofC based on variablexj dividesC into

C1(j, �)=
{
x ∈ C|xj��

}
,

C2(j, �)=
{
x ∈ C|xj > �

}
.

Thus the subsetC is split by use of one variablexj , with the split simply depending on
a threshold� from the range ofxj . By starting withC = Rp and performing successive
splittings one obtains a tree. Afterd splittings, one obtains subsets ofRp of the form{

x|xi1 ��1
} ∩ {

x|xi2 > �2
} ∩ · · · ∩ {

x|xid ��d
}
.

A subset is identical to a patternP given by the sequence{(js, Is), s = 1, . . . , d} wherejs
identifies the variable andIs specifies the interval which in the simple case of binary splits
has the formIs = (−∞, �s] or Is = (�s ,+∞). The relationship between decision trees and
patterns is simple: a pattern is equivalent to a leaf.

3.1.1. Splitting criterion
Given a patternP of orderd, an additional split in variablej at � yields a(d + 1)-

dimensional pattern. Let

P ∩ A= P ∩ {
�|xj (�) ∈ Ij

}
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denote the new pattern, whereIj = (−∞, �j
]
or Ij = (

�j ,+∞)
. Thus starting fromP one

obtains for the transition fromP to P ∩ A the transition contingency table

Y = 1 . . . Y =K
P ∩ A nPA,1 . . . nPA,K
P ∩ A nPA,1 . . . nPA,K

nP,1 . . . nP,k

The marginsnP,k for k from {1, . . . , K} represent the number of observations from classk
in patternP.

The new split is chosen to minimize a splitting criterion. One of the most common criteria
is the deviance, also called cross-entropy, seeHastie et al. (2001). The deviance of a pattern
P corresponds to the fit of the model

p(P |Y = 1)= · · · = p(P |Y =K).
Letndenote the total number of observations andnk the number of observations from class
k. The deviance has the form

D(P )= 2
K∑
k=1

{
nP,k log

nP,k/nk

nP /n
+ nP,k log

nP,k/nk

nP /n

}

= 2
K∑
k=1

{
nP,k log

p̂(P |k)
p̂(P )

+ nP,k log
p̂(P |k)
p̂(P )

}

= 2
K∑
k=1

nkKL(p̂(P |k), p̂(P )),

wherenP =∑K
k=1 nP,k, p̂(P |k)= nP,k

nk
, p̂(P )= nP

n
, andKL stands for the Kullback–Leibler

distance

KL(p, q)= p log
p

q
+ (q − p) log

1− p
1− q .

The new split which characterizesA is chosen to minimize the conditional devianceD(P ∩
A|P) given by

D(P ∩ A|P)=D(P ∩ A)−D(P )
and tests the hypothesis

p(P ∩ A|Y = 1)= · · · = p(P ∩ A|Y =K)
givenp(P |Y = 1)= · · · = p(P |Y =K). The conditional deviance can also be written as

D(P ∩ A|P)= 2
K∑
k=1

nP,kKL(p̂(P ∩ A|k), p̂(P ∩ A)).
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Various other splitting criteria have been used to grow trees, for instance the Gini-Index or
the misclassification error, seeHastie et al. (2001).

3.1.2. Stopping criterion
The splitting criterion characterizes the way the tree is grown. In addition a stopping-

criterion has to be chosen. In the tree literature, various stopping criteria havebeenproposed,
for instance byBreiman et al. (1984). Let us consider a leafP. One can decide not to split
this leaf if its order exceeds a fixed number, if it contains less than a fixed number of
observations or if the best split would yield at least one leaf with less than a fixed number
of observations. Many other more sophisticated methods to limit the depth of trees such as
cost-complexity pruning described inHastie et al. (2001)have been investigated.

3.2. Discovering algorithm

When using trees for the detection of IPs the main problem is that trees are constructed by
recursive partitioning. What is an advantage in terms of computation time and structuring
turns into a disadvantage since the leaves share splits in the same variables. In particular, all
leaves share the same root splitting. Patterns that do not involve the root splitting variable
will never be found by a single tree. Therefore the proposed algorithm is based on the
growing of several trees which use different sets of variables from which the splitting starts.

Thefirst stage is designed to findcandidatepatterns.Here candidatepatternsaregenerated
which are investigated in the following steps.The selection is directly basedon classification
trees. The iterative algorithm grows a tree on the available set of variables and then removes
the variable that generates the first split from the available set of variables. Thus patterns
result which include different sets of variables. In applications we use the CART-algorithm
tree (Ripley, 1996) implemented in thetree library inR (R-Development-Core-Team,
2004) with the deviance as splitting criterion. As stopping criterion, we fixmincut (min-
imal number of observations to include in either child node) at 5,minsize (minimal
allowed node size) at 10 andmindev (minimal ratio between within-node deviance and
the root node deviance for the node to be split) at 0.01. These settings are the default values
of theRprogram.

In a second stage, conditions (2.1) and (2.2) resp. (2.4) and (2.5) are tested for the selected
candidates patterns. The significance levels for the tests (�1 and�2) as well as the testT to
be used (e.g. Fisher’s exact test) have to be specified as input. The whole procedure can be
summarized by the following algorithm.
Stage1: candidate patterns: Grow a classification tree. Store the obtained leaves and

eliminate the variable defining the first splitting of the tree from the set of input variables.
Repeat this procedure until there is no more variable in the input set. DefineSas the set of
all obtained leaves.
Stage2: relevance of candidate patterns: For each leaf fromS, definek0 as the class that

maximizesp̂(P |k).

(1) For each leaf, for allk 
= k0, test H(1,k)0 with testT to the significance level�1. Eliminate
from S all the patterns for which maxk 
=k0 p(1,k) > �1. This step corresponds to the
testing of condition (2.1) resp. (2.4).
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(2) For all the remaining leaves fromS, test H(2,j)0 for all j in {j1, . . . , jd} with testT to
the significance level�2. If maxj p(2,j) > �2, eliminate the variable for whichp(2,j) is
maximal from the IP. Repeat this procedure as long as variables are eliminated. This
step corresponds to the testing of condition (2.2) resp. (2.5).

(3) Repeat step 1 for all the leaves that have be shortened in step 2. This step is necessary
to ascertain that the shortened patterns still fulfill condition (2.1) resp. (2.4).

(4) Eliminate fromSall the duplicated patterns.

The algorithm yields empirical IPs which are based on tests with significance levels�1 and
�2. Since many tests are performed the question of the overall significance level arises.
This might be controlled for the given set of candidate patterns. It is, however, hard to
control for the total procedure. Approaches to control the level for trees by maximally se-
lected rank statistics are found inLausen and Schumacher (1992). Instead of performing
multiple testing, which would be very difficult in this framework, we follow an alterna-
tive approach by defining receiver operating curves which capture the performance of the
algorithms for varying significance levels. This topic is addressed in the following sec-
tion, where it is shown that the algorithm can detect ‘ideal’ theoretical IPs with quite good
accuracy.

3.3. Receiver operating characteristic

A popular method for summarizing the accuracy of a classification rule are receiver
operating characteristic (ROC) curves. A ROC curve is a plot of the true-positive rates
against the false-positive rates. In classification, curves result from the consideration of
varying thresholds on the diagnostic scale. Let a disease be diagnosed if the diagnostic
scale is larger than threshold�. Then the true-positive and false-positive rates are functions
of the threshold. The resulting ROCcurve is convex under quite natural assumptions.A large
body of literature deals with the concept and estimation of ROC curves. An early reference
is Swets and Pickett (1982), more recent approaches to estimation are proposed inLloyd
(2000)andVenkatraman (2000). A version of the ROC curve is suggested here to illustrate
the power of the method for detecting relevant interactions. The empirical ROC curve shows
the hit rate HR (or sensitivity) against the false alarm rate FAR (or specifity), where HR
and FAR depend on the parameters�1 and�2 and on the order of the IPs. Let, for example,
the order of the IPs be fixed atd = 2, i.e. only pairs of variables are investigated. Ifp is the
total number of variables, the total number of possible pairs of variables isp(p−1)/2. For
each possible pair of variables, two binary variables are defined:r, which equals 1 if the
pair forms a real IP of order 2 and 0 else, andd, which equals 1 if the pair is detected as
an IP of order 2 by our method and 0 else. For each parameter setting (�1 and�2), we are
interested in the following contingency table:

d d �

r nr,d nr,d nIP

r nr,d nr,d p(p − 1)/2 − nIP
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The hit rate(HR) is defined as the proportion of discovered IPs among thenIP real IPs, i.e.

HR = nr,d

nIP
.

Similarly, the false alarm rate(FAR) is defined as the proportion of patterns which were
detected as IPs among the non-IP patterns of the same order, i.e.

FAR = nr,d

p(p − 1)/2 − nIP
.

3.4. Simulation study

3.4.1. Study design
In a simulation study it is investigated if the algorithm is able to detect simulated patterns.

To make the problem more simple and reduce the number of parameters in the study,
we consider only the case of two classes. Simulated data are obtained by the following
procedure. The number of variables contained in the data set is fixed atp = 50 and the
number of observations is varied (n = 50,80). These sample sizes correspond roughly to
the typical values found in real gene expression data sets. From the 50 variables, 20 variables
form pairwise IPs (variable 1 forms an IP with variable 2, variable 3 with variable 4, and so
on). The two threshold values defining each pattern are drawn randomly from the uniform
distribution in[0.25,0.75]. The type of inequality defining the pattern (� or >) are also
chosen randomly. Thus, various data configurations are obtained. In the subsets defined by
the pattern and in its complement, the distribution is uniform. The rest of the 50 variables
are generated randomly and independently of the class, following the uniform distribution
in [0,1].

The simulation study is designed as follows. We generate 100 random data matrices
following the procedure described above. Then the discovering algorithm is run on each
data matrix with different values of�1 and�2. HR and FAR are estimated for each parameter
setting from the contingency tables obtained for the 100 random data matrices. If an IP for
class 1 is detected as an IP for class 2 or vice-versa, the IP is considered as false alarm.
Finally the means across simulations are built.

3.4.2. Simulation results
Fig. 1 displays the estimated ROCs for two values ofn (n = 50 and 80): the hit rate is

represented against the false alarm rate for different values of�1 (ranging from 10−20 to
10−2) and�2 (ranging from 10−14 to 10−4). It is seen that for decreasing significance levels
the ROCs rather soon become horizontal, signaling a stable level of detection rate with the
level depending on sample size. Within this stable level the increase of significance levels
only increases the false alarm rate.Fig. 2displays the boxplots of the hit rate and false alarm
rate forn= 50 and 80, for three parameter settings which correspond to different zones of
each ROC curve. As can be seen fromFig. 2, the variance of the hit rate and false alarm
rate across the 100 simulations is quite low, although not negligible.
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Fig. 1. ROC curve forn= 50 and 80 (simulated data).

 α2=10-2 α2=10-4 α2=10-6 α2=10-2 α2=10-10 α2=10-12

 α2=10-2 α2=10-4 α2=10-6 α2=10-2 α2=10-10 α2=10-12

0.0

0.4

0.8

0.0

0.4

0.8

Hit rate, n=50,  α1=10−6 Hit rate, n=80,  α1=10−10

0.000

0.003

0.006

0.000

0.003

0.006

False alarm rate, n=50,  α1=10−6 False alarm rate, n=80,  α1=10−10

Fig. 2. Boxplot of the hit rate (top) and false alarm rate (bottom) forn = 50 (left) and 80 (right), for different
values of�1 and�2.
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4. Classification based on IPs

4.1. Method

As can be seen from their definition, IPs might be useful to define predictors for classifi-
cation. An inconvenience of the CART approach for data sets with many variables and few
observations is that the tree often consists of few splittings. If one stops growing the tree
too late, then some splittings might be statistically irrelevant. And if the growing is stopped
too early, the decision rule depends on very few variables, and does not use most of the
potentially interesting variables from the data set. By using IPs instead of tree leaves as a
basis for the decision rule, one avoids a major problem: the decision rule uses much more
information from the data set than a single tree does. In the following, a simple method to
use IPs for classification is proposed. It is particularly suited for data sets with many (metric
or categorical) variables and few observations. It can also be used for data sets with fewer
variables, however without spectacular gain in accuracy.

From now on, we suppose that we have a learning data setL and a test data setT. To
predict the class of the observations fromT, we proceed as follows: First, IPs are found by
applying the discovering algorithm on the training setL. Second,mnew binary covariates
Z1, . . . , Zm are defined, wheremdenotes the number of found IPs. The variables

Zj =
{

1 for thej th IP,
0 otherwise,

indicate if the considered observation fulfills the conditions defining the considered IP.
One obtains a transformed learning data set and a transformed test data set. Then virtually
any supervised learning method can be applied to these data matrices, for instance linear
discriminant analysis (with Bayes or maximum-likelihood rule), nearest neighborhood,
logistic regression (ifm is not too large), etc.

4.2. Study design

Fifty random partitions into a learning data setL (containingn−10 observations) and a
test data setT (containing 10 observations) are generated. For each partition, we proceed
as follows. If the number of variables is high, a prescreening step is necessary. It is done by
selecting thep̃ variables with lowestp-value for Wilcoxon’s test testing the equality of the
median in two classes, using onlyL, as described inDettling and Bühlmann (2003). If the
number of classesK is greater than 2, the procedure is repeatedK times: for theK classes
successively, one tests the equality of the medians in the considered class and in all the
other classes together. ThenK groups of variables are selected.An alternative, which might
seem more appropriate for multiclass problems, is to use the Kruskal–Wallis statistic. One
applies the Kruskal–Wallis test to all genes and selects thep̃ genes with lowestp-values.
However, the results obtained with this method are worse than with our procedure. One
possible explanation is that the variables selected by the Kruskal–Wallis statistic do not
necessarily separate well allK classes.

A prescreening is performed for three of the four investigated data sets: the leukemia, the
colon and the SRBCT data sets, which are described in the following subsection. For each
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data set, the number of selected variables is fixed successively atp̃=50,100,200 and 300.
These values have been chosen, because for greater values ofp̃, the discovering algorithm
is computationally very intensive and for lower values ofp̃, the number of found IPs is too
low (or even zero for some of the partitions).

We run the discovering algorithm to find IPs, with different values for the parameter�1
andp̃. To reduce the number of parameters,�2 was fixed at 10−4. �1 is chosen on a heuristic
basis. It is chosen so that the number of found IPs is non zero and smaller than, say 200 for
all the partitions. For the tree topology parameters, the default values of theRprogram as
described in Section 3 are used.

Once the IPs are found, the new covariates are determined for all observations fromL
andT. Then classification is carried out, either with nearest neighborhood classification
based on 5 nearest neighbors (5-NN) or with linear discriminant analysis. Since the results
were slightly better with 5-NN, the results with linear discriminant analysis are not shown.
For the nearest neighborhood classification, the Euclidean distance was used.
Mean error rates over the50partitions: For each parameter combination, the mean error

rate over the 50 random partitions (i.e. the mean proportion of observations from the test set
that were misclassified) is computed. The results are summarized in a table. For comparison,
we also show the mean error rate obtained with classical CART, using the sameRprogram
as in the discovering algorithm, and with 5-NN applied directly on thep̃ genes. The latter is
known to be one of the best performing discrimination methods for microarray data (Dudoit
et al., 2002).
Observation-wise error rate: For each parameter combination and for each single obser-

vation, the proportion of times it was misclassified (out of the runs in which it was in the
test set) is recorded. We summarize the results by means of survival plots as described in
Dudoit et al. (2000): the proportion of observations classified correctly in at leastV% of the
runs is represented againstV. The results are shown only for the best parameter combination
for each data set.
Variables involved in IPs:An interesting issue is whether the variables involved in the IPs

alsoperformgood individually.Toanswer this question,wefirst rank the variablesaccording
to the Wilcoxon-statistic using all the observations. Then we represent the proportion of
runs in which the variables were selected against their rank. We show the results for the
colon data and the leukemia data withp̃= 300 andpG= 10−6 (for colon) andpG= 10−10

(for leukemia).
Number of IPs: The number of found IPs depends highly on the parameters. Typically,

it increases withp̃ and�1. The number of found IPs of each order is stored each time the
discovering algorithm is run. The results are summarized by plotting the mean number of
found IPs of each order over the 50 random partitions, for each data set and for different
values of�1. For the 3 gene expression data sets (leukemia, colon, SRBCT), we show only
the results forp̃ = 300. For smaller values of̃p the plots show similar patterns, but the
absolute numbers of IPs are lower.

4.3. Data sets

Leukemia data: This data set was introduced inGolub et al. (1999)and contains the
expression levels of 7129 genes for 47 ALL-leukemia patients and 25 AML-leukemia pa-
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tients. It is included in theR library golubEsets . After data preprocessing following
the procedure described inDudoit et al. (2002), only 3571 variables remain. It is easy to
achieve excellent classification accuracy on this data set, even with quite trivial methods as
described in the original paper (Golub et al., 1999). Indeed, we found out that it is possible
to find many IPs even if�1 is very low. Thus, we set�1 to �1 = 10−10,10−12 and 10−14

successively in our study.
Colon microarray data: The colon data set is a publicly available ‘benchmark’ gene ex-

pression data set which is extensively described inAlon et al. (1999). It can be downloaded
from the web pagehttp://microarray.princeton.edu/oncology/affy
data/ . The data set contains the expression levels ofp = 2000 genes forn = 62 pa-
tients from two classes. Twenty two patients are healthy patients and 40 have colon can-
cer. This data set is not as ‘easy’ as the leukemia data set. The classification accuracy is
usually much lower, for instance using Support Vector Machines as described inFurey
et al. (2000). It is also more difficult to find good IPs:�1 was set heuristically to�1 =
10−6,10−8 and 10−10. Note that it is also possible to run the algorithm with�1 = 10−12

and 10−14 as for the leukemia data set, but with such values for�1, no IP would be
found.
SRBCTmicroarraydata:Thisgeneexpressiondataset ispresented inKahnetal. (2001). It

can be downloaded fromhttp://www.thep.lu.se/pub/Preprints/01
lu _tp _01_06_supp.html .

It contains the expression levels of 2308 genes for 83 Small Round Blue Cells Tumor
(SRBCT) patients belonging to one of the 4 tumor classes: Ewing family of tumors (EWS),
non-Hodgkin lymphoma (BL), neuroblastoma (NB) and rhabdomyosarcoma (RMS). For
this data set,�1 was set to�1 = 10−3,10−4,10−5 and 10−6. These values are considerably
higher than for the leukemia and colon data sets. One of the possible explanations is that to
be selected as an IP of typek (k ∈ {1,2,3,4}), a pattern must have higher frequency in class
k than in all three other classes, which is a stronger requirement than for the two-classes
case.
Iris data: The famous (Fisher’s and Anderson’s) iris data set is included in theR library

MASS. It gives 4 different measurements (sepal length and width, petal length and width)
for 150 flowers from each of the three species (class labels) setosa, versicolor, virginica.�1
was set successively to�1 = 10−4,10−8 and 10−12.

4.4. Results

Mean error rate: The mean error rates for different values of the parameters are shown in
Table1for the four data sets. For all four data sets, thenewmethodperformsmuchbetter than
CART and is comparable to nearest neighborhood classification. Thus it is a competitor to
one of the best classification procedures in microarray data with the advantage of providing
information on the relevance of variables and IPs. Surprisingly, the number of variables
as well as the significance level�1 do not seem to have strong influence on the results,
provided IPs are found. For the case of two classes the method may be compared to the
method suggested inBoulesteix et al. (2003). It turns out that the classification results with
the new method are as good as with the former method for the colon data and better for the
leukemia data.

http://www.microarray.princeton.edu/oncology/affydata/
http://www.microarray.princeton.edu/oncology/affydata/
http://www.thep.lu.se/pub/Preprints/01/lutp0106supp.html
http://www.thep.lu.se/pub/Preprints/01/lutp0106supp.html
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Table 1
Mean error rate over 50 random partitions

Colon data �1 = 10−6 �1 = 10−8 �1 = 10−10 tree 5–NN
50 variables 0.16 0.17 0.19 0.30 0.16
100 variables 0.14 0.14 0.16 0.30 0.14
200 variables 0.15 0.15 0.15 0.29 0.15
300 variables 0.15 0.15 0.15 0.29 0.15

Leukemia data �1 = 10−10 �1 = 10−12 �1 = 10−14 tree 5–NN
50 variables 0.042 0.042 0.042 0.15 0.042
100 variables 0.025 0.025 0.025 0.15 0.025
200 variables 0.016 0.016 0.016 0.15 0.016
300 variables 0.016 0.016 0.016 0.15 0.016

SRBCT data �1 = 10−4 �1 = 10−5 �1 = 10−6 tree 5–NN
20 variables 0.0077 0.0077 0.0080 0.25 0.0077
50 variables 0.0046 0.0046 0.0048 0.25 0.0046

Iris data �1 = 10−4 �1 = 10−8 �1 = 10−12 tree 5–NN
0.035 0.035 0.035 0.059 0.035
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Fig. 3. Survival plot for leukemia (solid), colon (dashed), SRBCT (longdash) and iris (dotted).

Observation-wise error rate: As can be seen from the survival plot depicted inFig. 3,
a large part of the error rate is due to observations that are misclassified each time they
are included in the test data set. Indeed, even for smallV, the proportion of observations
classified correctly in at leastV% of the runs is not 1, and it decreases slowly for largeV.
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Fig. 4. Number of IPs of each order. Leukemia:p̃=300 and�1=10−10 (solid),�1=10−12 (dashed),�1=10−14

(dotted). Colon:p̃ = 300 and�1 = 10−6 (solid), �1 = 10−8 (dashed),�1 = 10−10 (dotted). SRBCT:p̃ = 50
and�1 = 10−4 (solid),�1 = 10−5 (dashed),�1 = 10−6 (dotted). Iris:�1 = 10−4 (solid),�1 = 10−8 (dashed),
�1 = 10−12 (dotted).

We found out that most of the ‘problematic’ observations are also misclassified by other
classification methods (data not shown).
Number of IPs: As can be seen fromFig. 4, the most frequent IPs are IPs of order 2.

We did not find any IP of order 4, and few IPs of order 3. If the data sets contained more
observations, it would certainly be possible to find more IPs of order 3 and 4 (or more). IPs
of order 1 are quite frequent and correspond to variables that can separate the classes well.
Unsurprisingly, the number of found IPs increases with�1. An important fact which cannot
be seen in the figure is the high variability of the numbers of IPs over the random partitions:
like CART, our learning method is not very robust, which can be seen as a drawback from
the statistical point of view.
Variables involved in IPs: As can be seen fromFig. 5 (for the colon and the leukemia

data sets), most of the ‘best’ variables appear in at least one IP in most runs. But some ‘less
relevant’ variables are involved in IPs in many runs as well, thus showing that variables
that perform poorly individually might be interesting in association with others. On the
whole, there seems to be a weak linear dependence between the variable rank and the
frequency of selection. Separate analysis for IPs of order 1,2,3 would probably show
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Fig. 5. Proportion of runs in which the variable is involved in at least one IP.

stronger dependence for IPs of order 1 than for IPs of order 2 and 3. In the next section, we
give an example on how interactions patterns can be interpreted in practice.

4.5. An example

In this section, we illustrate the concept of IPs using a concrete example from the colon
data. Since the goal is not the evaluation of the classification performance but the identifica-
tion of relevant patterns, the discovering algorithm is run on the whole colon data set with
�1 = 10−10 and�2 = 10−6. The discovering algorithm outputs a list of 9 IPs. For example,
the genes R55310 and H72234 are found to form an IP for class 1 (normal tissue) which is
defined by the restrictions

R55310>0.40

and

H72234<− 0.1

as depicted inFig. 6. The corresponding biological hypothesis can be formulated as “in
normal tissues, gene R55310 has a high expression level and gene H72234 has a low
expression level”.Hypothesesof this typemightbeusedasabasis for thedesignofbiological
experiments.
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5. Discussion

CART is one of the most popular classification methods in many application fields of
statistics, for instance medicine. The main advantages that make it so popular are its sim-
plicity and its interpretability. Moreover, scientists are often interested in the interaction
structures implied by the CART decision rules. However, when the number of variables is
high and the number of observations small, like in microarray data, CART usually performs
poorly, because it uses only a very small part of the available information. Among the huge
number of variables, it is often possible to find a few that separate the classes very good
or even perfectly in the learning set. Thus, the obtained trees have very short branches and
often perform poorly on new data sets. Modern methods based on aggregation of trees do
improve the results a little as argued inDudoit et al. (2002), but do not seem to overcome
the problem completely. Instead of partitioning the input space like in CART, our method
defines a wide collection of leaves with non-empty intersection, thus allowing more robust
classification.

Anotheradvantageofour classificationmethod is its interpretability in termsof interaction
structures. This is a very important issue for applied scientists, especially those working
on gene expression data. Indeed, although it is almost certain that genes somehow interact,
the challenging question of modelling these interactions remains partly unanswered. The
proposed method can detect quite successfully IPs in simulated ‘perfect’ data.

The proposed approach differs significantly from Dong and Li’s approach in several
aspects. First, we use a statistical criterion to define the patterns instead of the heuristic
growth rate. Second, while Dong and Li find patterns of high order, we argue that short
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pattern involving only relevant variables are preferable, in order to avoid overfitting of the
learning data. Therefore, condition (2.2) was added in the definition. Third, the method to
detect the patterns is completely different: while Dong and Li perform a dramatic variable
selection and enumerate all the possible patterns built with the selected variables, we use
a CART-based algorithm which accelerates the search considerably and do not necessitate
such a dramatic variable selection. The approach described inBoulesteix et al. (2003)may
be seen as a simplification of the method for binary responses. The search algorithm is
similar, but the testing of condition (2.2) is replaced by a pruning step while building the
trees. Thus, only the variables involved in the subsequent splittings can be eliminated from
a pattern. This approach is often appropriate for binary responses, since the successive
splittings of the trees are chosen to minimize the deviance. However, it is too restrictive for
multicategorical responses or for highly correlated predictors. The proposed definition and
search algorithm overcome this inconvenience and generalize the framework developed in
Boulesteix et al. (2003).
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