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Abstract In medical research biostatisticians are often confronted with supervised
learning problems involving different kinds of predictors including, e.g., classi-
cal clinical predictors and high-dimensional “omics” data. The question of the
added predictive value of high-dimensional omics data given that classical pre-
dictors are already available has long been under-considered in the biostatistics
and bioinformatics literature. This issue is characterized by a lack of guidelines
and a huge amount of conceivable approaches. Two existing methods addressing
this important issue are systematically compared in the present paper. The global-
boosttest procedure (Boulesteix and Hothorn, 2010) examines the additional pre-
dictive value of high-dimensional molecular data via boosting regression including
a clinical offset, while the pre-validation method sums up omics data in form of
a new cross-validated predictor that is finally assessed in a standard generalized
linear model (Tibshirani and Efron, 2002). Globalboosttest and pre-validation are
introduced and discussed, then assessed based on a simulation study with survival
data and finally applied to breast cancer microarray data for illustration. R codes
to reproduce our results and figures are available from http://www.ibe.med.uni-
muenchen.de/organisation/mitarbeiter/020 professuren/boulesteix/gbtpv/index.html
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1 Introduction

While high-dimensional “omics” data such as microarray transcriptomic data have
been studied in the context of outcome prediction for more than ten years in biomed-
ical research, the question of the added predictive value of such data given that clas-
sical predictors are already available has comparatively focused less attention in
the literature (e.g. Boulesteix and Sauerbrei, 2011). For a given prediction problem
(for example prediction of response to therapy or survival time), we often have two
types of predictors. On the one hand, conventional clinical covariates such as, e.g.
age, sex, disease duration or tumour stage are available as potential predictors. They
have been typically extensively investigated and validated in previous studies. On
the other hand, we have a large number of “omics” predictors that are generally more
difficult to measure than classical clinical predictors and not yet well-established. In
the context of translational biomedical research, researchers are interested in the
added predictive value of such omics predictors over classical clinical predictors.

The combined analysis of high-dimensional omics predictors and low-dimensional
clinical predictors raises various challenges. How can we build a combined model
that is optimal in terms of prediction accuracy? How can we test the added predic-
tive value of high-dimensional omics data over classical clinical predictors and/or
assess the respective importance of the two types of predictors? Leaving the first
challenge aside, we focus on tests and compare globalboosttest (Boulesteix and
Hothorn, 2010) and pre-validation (Tibshirani and Efron, 2002), two testing ap-
proaches. Since omics data are high-dimensional, standard likelihood ratio tests in
the framework of Generalized Linear Models (GLM) cannot be performed. The two
examined methods tackle this problem based on a two-step procedure, but in differ-
ent ways: while globalboosttest summarizes clinical predictors as an offset and then
fits a regularized regression model to omics data, pre-validation first summarizes
omics data as a cross-validated “pseudo predictor” and then tests its significance in
a multivariate GLM adjusting for clinical predictors.

2 Globalboosttest

The “globalboosttest” procedure (Boulesteix and Hothorn, 2010) aims at testing
the additional predictive value of high-dimensional data by combining two well-
known statistical tools: GLMs and boosting regression. Suppose we have both high-
dimensional omics data as potential predictors on the one hand and a few classical
clinical covariates or a well-defined prognostic index on the other hand. The con-
sidered null-hypothesis is that “given the clinical covariates the omics data have no
added predictive value”. To address this testing problem the globalboosttest proce-
dure first builds a clinical model (step 1, also denoted as “internal in this paper”)
based on clinical covariates only. For example step 1 is based on logistic regres-
sion in case of a binary response or on Cox proportional hazard regression in case
of a censored survival response. The resulting linear predictor is then considered
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as an offset in a more complex model involving omics data. As suggested by the
procedure’s name, the latter model is estimated by boosting regression (step 2, also
denoted as external in this paper). Step 2 implies an iterative stepwise selection of
the omics predictors while taking the clinical covariates into account in form of the
offset. This step 2 is then repeated a large number of times after randomly permuting
the omics data (but not the clinical data). A permutation p-value is then derived as
the frequency at which the negative binomial log-likelihood of the boosting regres-
sion model was smaller in permuted data sets than with the original data set.
Tuning parameters are the number of boosting iterations in the external model and
the number of permutations performed in step 2. The number of permutations should
be as large as computationally feasible to increase the test’s precision. The number
of boosting regression steps is a parameter that potentially influences the test result.
Note that, strictly speaking, this permutation procedure tests the joint hypothesis that
“omics data have no added predictive value” and “omics data and clinical predictors
are independent”, because by permuting omics data we also destroy the association
between omics and clinical predictors. An important feature of the globalboost-
test procedure, however, is that the offset is fixed and computed before seeing the
omics predictors. Thus, in the case where omics and clinical predictors are strongly
correlated, we expect the clinical offset to capture much variability and hence the
null-hypothesis to be retained. This issue will be further discussed in Section 4.
The fact that the offset is fixed also implies that the coefficients of the clinical pre-
dictors fit in step 1 are not influenced by the omics predictors added to the model
by boosting regression in step 2. On the one hand such an offset can well address
the question of the added predictive value. The offset can be considered as an ar-
tificial but compulsory first predictor that is subsequently completed by the omics
predictors selected afterwards. On the other hand the inconvenience is that clinical
covariates cannot be tested – either individually or as a whole. The globalboosttest
procedure allows to test the omics predictors only.

In principle any type of response variable can be analysed using globalboosttest
provided that it can be accommodated into GLMs and boosting regression. This
includes normally distributed, binary or censored responses. Furthermore, boost-
ing regression may be essentially replaced by any regularized regression technique
allowing an offset, e.g. the Lasso.

3 Pre-validation

The pre-validation method is based on a classical hypothesis testing framework
within a GLM including the clinical predictors as well as a “pseudo-predictor”
summarizing the omics predictors. This pseudo-predictor can be derived either at
the link scale (which is preferred here in the context of survival analysis) or at the
predictor scale. In principle all methods that can handle a large number of predic-
tors can be used for this purpose, e.g. boosting regression or Lasso regression. In
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this study boosting regression is considered for the sake of consistency with the
globalboosttest procedure described in Section 3.

The obtained pseudo-predictor summarizing the omics data, however, should not
be tested in a multivariate regression model based on the data set that were used
for its construction. This approach would strongly favor omics data, because the
pseudo-predictor constructed from high-dimensional would overfit the data set. To
overcome this problem Tibshirani and Efron (2002) suggest “pre-validation”. The
term pre-validation refers to a cross-validation (CV) performed within the consid-
ered data set. At each CV iteration j, a pseudo-predictor is derived from the omics
data set S \S j (where S j stands for the jth CV fold) and then computed for the ob-
servations from S j. Since the folds S j form a partition of the data set S, one thus
obtains a pseudo-predictor value for each observation. This “pre-validated” pseudo-
predictor is not expected to overfit the data set, since at each CV iteration there is no
overlap between the “training data” S \ S j and the fold S j. This pre-validation step
is denoted as “internal”.

Finally, a multivariate regression model (denoted as “external” model) is fitted
using this pre-validated pseudo-predictor and the clinical predictors as predictors.
The added predictive value is assessed by testing the significance of the regression
coefficient of the pseudo-predictor. However, in a subsequent publication (Höfling
and Tibshirani, 2008) this test is shown to be biased due to the violation of the i.i.d.
assumption in the GLM. Höfling and Tibshirani (2008) address this bias through a
permutation procedure which we also use here.

In contrast to globalboosttest, pre-validation considers clinical and omics predic-
tors more symmetrically - in the sense that the coefficients of the clinical predictors
are affected by the omics data, which is not the case in globalboosttest. If clinical
and omics data are correlated, we thus expect both the clinical predictors and the
omics-based pseudo-predictor to capture an important part of the variability. An-
other difference to globalboosttest is that the pseudo-predictor is computed differ-
ently for the K subsets, thus making computation more intensive and interpretation
more difficult.

4 Simulation study

Both methods address the added value of high-dimensional omics data in the same
data situation, but essentially ask different questions. While globalboosttest directly
focuses on the added predictive value, the rationale behind pre-validation is of more
symmetric nature. In this paper, their respective performance is examined in differ-
ent simulation settings with sample size n = 200 and a censored time-to-event as
response Y . The partially unobserved survival times Ti (i = 1, . . . ,200) are gener-
ated from a Cox-Weibull model (Cox, 1972) similarly to Binder and Schumacher
(2008). The cumulative density is given as F(t) = 1− exp(−(λ (t) · t/α)), where
λ (t) denotes the hazard rate. The survival times Ti (i = 1, . . . ,200) are generated

as Ti =
−log(Ui)·α

λ (t) , whereby Ui is drawn from the uniform distribution U(0,1) and
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Setting Number of Correlation informative Intersection
omics coefficient omics informative/correlated

covariates covariates omics covariates
I 1000 ρ = 0 0 {∅}
II 1000 ρ = 0 20 {∅}
III–VI 1000 ρ = 0.2 20 {∅,5,10,20}
VII–X 1000 ρ = 0.8 20 {∅,5,10,20}
XI: Many omics predictors 5000 ρ = 0.2 20 {10}
XII: Few omics predictors 20 ρ = 0.2 20 {20}
XIII: Many informative omics 1000 ρ = 0.2 200 {20}
XIV: Few informative omics 1000 ρ = 0.2 2 {∅}
XV: Perfect corrlation i 1000 ρ = 1 20 {20}
XVI: Perfect corrlation ii 1000 ρ = 1 0 {∅}

Table 1 Overview on simulation settings with a censored time-to-event as response, 5 clinical
covariates and n = 200. If so each clinical covariate correlates to 10 omics covariates. For boosting
mstop = (50,100,200,500,1000) iterations and for testing 1000 permutations are considered. For
each setting globalboosttest/pre-validation are computed on 100 different data sets.

the shape parameter α is set to 1 in our study. Assuming proportional hazards, λ (t)
is modeled as λ (t) = λ0exp(η), whereby the baseline hazard rate λ0 is set to 0.1
and η denotes an additive predictor. The follow-up times Fi are generated inde-
pendently of the survival times in the same way as Ti but with a constant hazard
rate λ (t) = 0.1 and α = 1. Observations are censored if their follow-up time ends
before the expected event such that about half of the observations are censored.
Finally, the observation times Yi are obtained as Yi = min(Fi,Ti). Further, we gen-
erate five standard normal and mutually uncorrelated clinical predictors as well as
1000 standard normal omics predictors. Ten of these omics predictors are correlated
with the first clinical predictor, 10 further omics predictors are correlated with the
second clinical predictor, and so on, yielding a total of 50 omics predictors cor-
related with clinical predictors, whereby the correlation ρ is set either to ρ = 0
(no correlation), ρ = 0.2 (weak correlation) and ρ = 0.8 (strong correlation). The
linear predictor η is defined as follows. The regression coefficients of the clini-
cal predictors are chosen to mimick a realistic scenario with predictors of varying
strengths: βclinic = (0,0.5,2,−1.5,−1)T . Out of the 1000 omics predictors, 20 have
non-zero regression coefficients in the linear predictor η . The 20 coefficients are
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Fig. 1 Results of setting V. Left: globalboosttest. Right: pre-validation.
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drawn from the uniform distribution U(0.1,0.7). Importantly, the size of the inter-
section between the 20 predictive predictors and the 50 correlated predictors is set
successively to 0, 5, 10 and 20. Size 0 yields a setting where clinical and informative
omics predictors are completely uncorrelated, while size 20 means that all informa-
tive omics predictors are correlated with clinical predictors. Table 1 (top) sums up
the resulting settings, including an additional “null-scenario” without informative
omics predictors (setting I). Moreover, some more extreme situations (bottom of
Table 1) are additionally included in the study to complement the considered set-
tings. First, setting VI is enlarged to 5000 omics covariates (setting XI) and as well
reduced to only 20 (setting XII). Settings with more (setting XIII) and fewer (set-
ting XIV) informative omics predictors are also considered. Finally settings with
perfect correlation (ρ = 1) between the five clinical predictors and the 50 correlated
omics predictors are considered, either with completely non-informative omics pre-
dictors (setting XV) or with 20 informative predictors included in the 50 correlated
omics predictors (setting XVI). For each setting the two methods globalboosttest
and pre-validation are evaluated based on 100 randomly generated data sets. For
both globalboosttest and pre-validation the number of boosting iteration mstop is
set successively to 50, 100, 200, 500, and 1000. All tests base on 1000 permuta-
tions. As expected, both globalboosttest and pre-validation yield p-values that are
approximately uniformly distributed [0,1] in the absence of informative omics pre-
dictors (data not shown). When omics predictors are informative and not perfectly
correlated with clinical predictors, globalboosttest tends to yield smaller p-values
than pre-validation. This result is illustrated by Figure 1 that displays the p-value of
the two tests for different numbers mstop of boosting iterations in Setting V. More-
over, globalboosttest tends to already reach good power for a smaller mstop even
in the case of high correlation between omics and clinical predictors. In contrast,
pre-validation needs more iterations to capture the added predictive value of omics
predictors. That is probably because pre-validation does not take the clinical pre-
dictors into account while summarizing the omics predictors and thus first captures
information that are already captured by clinical predictors. By considering clinical
predictors as an offset, globalboosttest captures the residual variability that is not
captured by clinical predictors. Thus, globalboosttest generally needs less boosting
iterations to reach good power. An exception is setting X, where all informative pre-
dictors are strongly correlated with a clinical predictor: globalboosttest then yields
uniformly distributed p-values for a small mstop, while a large mstop leads to smaller
p-values.This result obtained in setting X is related to the essential goal of global-
boosttest. Globalboosttest tests the added predictive value of omics predictors and
focuses on the part of the variability that is not captured by the clinical offset. In the
unrealistic extreme case where all 50 informative omics predictors are perfectly cor-
related with a clinical predictor, the p-values are uniformly distributed on [0,1] with
globalboosttest, but not with pre-validation. Note that this result is in contradiction
with the theoretical null-hypothesis corresponding to globalboosttest: a strong cor-
relation between omics and clinical predictors does not lead to the rejection of the
null-hypothesis. Pre-validation employing the Lasso as “internal model” struggles
with some problems related to tuning. As the number of observations is typically
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Fig. 2 Permutation procedure on Chin data. Left: globalboosttest. Right: pre-validation.

small for omics data, there are even less observations in training and test data sets.
That makes the choice of λ extremely unstable. Each fold of the pseudo-predictor
is based on a different value of λ . In many cases the optimal choice of λ selects no
omics predictors at all. The choice of λ is much more crucial as the choice of boost-
ing parameter mstop. Consequently, globalboosttest and pre-validation employing
boosting perform substantially better than pre-validation employing the Lasso.

5 Analysis of Breast Cancer Data

For illustration a breast cancer data set (Chin and et. al., 2006) including 77 patients
is analyzed using globalboosttest and pre-validation with boosting regression. The
response of interest is the censored distal recurrence time in years. The considered
data set includes 11 clinical predictors such as age at diagnosis, variables of the
TNM staging system or information on estrogen and progesterone receptors, as well
as the expression level of 22215 genes acting as omics predictors.

The permutation-based p-values range from 0.77 to 0.97 for globalboosttest and
from 0.29 to 0.48 for pre-validation (depending on mstop). Figure 2 displays the
curves representing the negative binomial log-likelihood (for globalboosttest) and
the p-value (for pre-validation) obtained with the original data set (black) and the
permuted data sets (grey). Both methods suggest that omics predictors do not im-
prove prediction strength.

6 Summary and outlook

Simulation results suggest that in case of poor to moderate correlation between clin-
ical and omics predictors globalboosttest tends to have a superior power to pre-
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validation. However, in case of strong correlation globalboosttest becomes more
conservative, which reflects its rationale: globalboosttest tests added predictive
value, i.e. focuses on the variability that is not already captured by the clinical pre-
dictors. Whether it makes more sense to reject or the accept the null-hypothesis in
the case of strong correlation depends on the substantive context. Correlation also
seems to increase the impact of the number of boosting steps, suggesting that a sys-
tematic method for the choice of this parameter should be developed in the future.

In our paper the globalboosttest and pre-validation are assessed with respect
to their performance as testing procedures. However, similar approaches may be
adopted to derive combined prediction rules based on both clinical and omics predic-
tors, see Boulesteix and Sauerbrei (2011) for an overview of such approaches. Due
to its asymmetrical character giving more importance to clinical predictors, we ex-
pect the prediction rule derived from globalboosttest to perform poorly when these
predictors are weak. A pre-validation approach may be promising, see Boulesteix
et al (2008) for an example in the context of binary classification. More research
is needed to assess the respective merits of the two methods in terms of predictive
accuracy.
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