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Abstract

Binary outcomes that depend on an ordinal predictor in a non-monotonic way are common in medical data analysis. Such patterns
can be addressed in terms of cutpoints: for example, one looks for two cutpoints that define an interval in the range of the ordinal
predictor for which the probability of a positive outcome is particularly high (or low). A Chi-squared test may then be performed
to compare the proportions of positive outcomes in and outside this interval. However, if the two cutpoints are chosen to maximize
the Chi-squared statistic, referring the obtained Chi-squared statistic to the standard Chi-squared distribution is an inappropriate
approach. It is then necessary to correct the p-value for multiple comparisons by considering the distribution of the maximally
selected Chi-squared statistic instead of the nominal Chi-squared distribution. The exact distribution of the Chi-squared statistic
obtained with the two optimal cutpoints is derived based on combinatorial considerations. This approach is illustrated by a simulation
study and an application to varicella data.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Suppose we have a binary outcomeY (Y =0, 1) and an at least ordinally scaled predictor variable X that is suspected to
be associated withY. In medical applications, there is often interest in testing independence of X andY against an ordered
alternative e.g., in dosis-response problems. Some widely used methods for testing for trends in 2 × K ordered tables
are, e.g., the Cochran–Armitage test, the Cochran–Mantel–Haenszel test, rank tests such as the Jonckheere–Terpstra
test and the Wilcoxon rank sum test, or approaches based on isotonic regression (Robertson et al., 1988; Salanti and
Ulm, 2003). In machine learning, such associations are often examined based on binary splits of the form {X�a}
vs. {X > a}. Patterns of the form {a < X�b} vs. {X�a ∪ X > b} are also conceivable, for example if the probability
P(Y = 1|X = x) is higher for x ∈]a, b] than for x ∈] − ∞, a]∪]b, +∞[.

Such dependence structures are related to ‘umbrella orderings’ if the conditional probability P(Y =1|x) is larger for
intermediate x values than for small and large x values and to ‘U-shapes’ if vice versa. Umbrella orderings or U-shapes
may be observed in medical research when X is a predictor such as the age (in a broad sense) and Y denotes e.g.,
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the occurrence of complications. For instance, many diseases are known to be more severe for both infants and elder
patients than for young adults. Another interesting example is varicella. This disease is not equally serious for all age
categories: it rather shows a non-monotonic pattern. Similarly, perinatal morbidity and mortality are higher for both
premature and post-term babies than for babies born at term. Another typical example of umbrella ordering in medical
research is the effect of different doses of chemicals on the occurrence of tumors: some chemicals show evidence of
an increasing monotonic trend with a downturn for high doses due to the inhibition of the tumor development by the
toxic effect (Hans and Dunson, 2005).

There have been various proposals to assess such downturns or upturns. This problem is also commonly denoted
as change-point detection. A recent reference including a brief review of various methods for monotonic responses is
Hans and Dunson (2005). They suggest a bayesian inference method that addresses explicitly the problem of downturns
with applications to a carcinogenesis study. In the framework of maximally selected statistics, Lausen et al. (2002)
generalize the asymptotic results of Lausen and Schumacher (1992) on maximally selected rank statistics to ordinal
predictors and examine, e.g., umbrella alternatives.

Both approaches focus on the downturn, but do not give any information on the cutpoints defining the high-risk and
low-risk intervals. Moreover, they might not be applicable to small sample sizes. In the last few years, cutpoint-based
strategies have been sometimes criticized for ignoring a large part of the information contained in the data. Moreover,
setting an artificial cutpoint when there is no cutpoint but rather a smooth transition is critical. While dichotomizing
continuous predictors may be controversial depending on the considered problem (Royston et al., 2006), cutpoints might
be useful in the case of ordinal predictors with few distinct values, or to support medical decisions and diagnostics.
Moreover, cutpoint selection is a crucial issue in classification tree algorithms such as CART by Breiman et al. (1984)
and, more generally, in all the machine learning methods based on recursive partitioning.

In this paper, we address the assessment of cutpoints defining low or high-risk intervals, based on the principle
of maximally selected statistics. Our approach considers a special case of umbrella orderings that is known as the
‘epidemic wave model’ (Siegmund, 1986). From now on, we consider a variable X with K > 2 ordered categories
which are denoted as 1, . . . , K . Suppose one selects the pair of cutpoints (k1, k2) that maximizes the Chi-squared
statistic obtained from Table 1.

This resulting p-value must be interpreted with caution. Claiming that the cutpoints k1 and k2 are relevant because
the p-value is low is incorrect. Indeed, the distribution of the maximally selected Chi-squared statistic is different from
the nominal Chi-squared distribution with one degree of freedom on which the Chi-squared test is based. Maximally
selected statistics and minimally selected p-values have been the subject of numerous articles in the case of one cutpoint.
Miller and Siegmund (1982) show that the maximally selected Chi-squared statistic converges to a normalized Brownian
bridge under the null-hypothesis of no association between X and Y. The distribution of the maximally selected Chi-
squared statistic in the small sample case is examined by Halpern (1982) in a simulation study, while Koziol (1991)
derives the exact distribution of maximally selected Chi-squared statistics using a combinatorial approach. Maximally
selected rank statistics are investigated in Lausen and Schumacher (1992, 1996) and Hothorn and Lausen (2003).
Holländer et al. (2004) address confidence intervals for the effect of prognostic factors after optimal cutpoint selection.
The exact distribution of the maximally selected Chi-squared statistic in the context of a binaryY and an at least ordinally
scaled X with ties is derived in Boulesteix (2006b). An exact approach to handle the case of optimally selected splits of
a nominal variable is given in Boulesteix (2006a). The underlying idea of these papers is that the p-value obtained from
the optimal cutpoint or split has to be adjusted to account for the multiple testing effect. Applications of the theory of
maximally selected statistics to recursive partitioning algorithms are discussed by, e.g., Shih (2004) and Lausen et al.
(2004). All these articles address the case of one optimally selected cutpoint.

Matters become much more complicated when several cutpoints are chosen optimally and simultaneously, e.g.,
for recombination detection in DNA sequences. Assessing the distribution of maximally selected statistics in this

Table 1
Contingency table obtained by cutting X at k1 and k2

X�k1 or X > k2 k1 < X�k2 �

Y = 0 n1 n2 N0

Y = 1 n3 n4 N1
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situation is a very difficult task. Hence, existing approaches are often based on simulations (Halpern, 2000). Another
related method is Kuiper’s goodness-of-fit test (Kuiper, 1960). In the two-sample case, it tests the equality of two
continuous distribution functions (corresponding to Y = 0 and 1, respectively) based on empirical distributions. In the
two-cutpoint framework described in the present article, Kuiper’s test is expected to have higher power than the more
usual Kolmogorov–Smirnov test. However, it is not as easy to interpret as maximally selected statistics. Practitioners
expect simple conclusions such as ‘the risk is significantly higher if a < X�b than if X�a or X > b’ as supported by
the (adjusted) p-value of the Chi-squared test. Another inconvenience of Kuiper’s test is that it does not account for
ties. In the case of ordinal variables with few categories, ties cannot be ignored. In the present article, we suggest an
approach that overcomes these two problems.

We propose a new combinatorial approach to derive the exact distribution of the maximally selected Chi-squared
statistic in the two-cutpoint framework. Our novel procedure is distribution-free and can be applied in the case of a binary
Y and an at least ordinally scaled X. It is appropriate to analyze samples with moderate or small sizes with predictors
taking only a few values, e.g., X ∈ {1, 2, 3, 4, 5, 6}, but becomes computationally intensive when K approaches N. It
is easily generalizable to other association statistics for 2 × 2 contingency tables.

The rest of the paper is organized as follows. Our approach to derive the exact distribution of the maximally selected
Chi-squared statistic in the two-cutpoints framework is presented in Section 2, including a discussion of computational
aspects. In Section 3, the new approach is compared via simulations to the comparable method for maximally selected
Chi-squared statistics with one cutpoint by Boulesteix (2006b). Section 4 gives an illustration through an application
to varicella data.

2. Derivation of the exact distribution

2.1. Notations

Let (xi, yi)i=1,...,N denote N independent observations of X and Y. N0 and N1 denote the numbers of observations
with yi = 0 and yi = 1, respectively, and mk (k = 1, . . . , K) the number of observations with xi = k, whereas mck

(c = 0, 1, k = 1, . . . , K) is the number of observations with yi = c and xi = k. The association between X and Y may be
visualized by plotting the graph m1k/mk , k = 1, . . . , K . Extreme examples are depicted in Fig. 1 for N0 =N1 = 30 and
m1 =m2 =m3 =m4 =m5 =m6 =10. An approximately horizontal graph of type (a) indicates poor association between
X and Y. Types (b) and (c) correspond to strong monotonic associations, whereas (d) and (e) display non-monotonic
association patterns with two underlying cutpoints. We consider splits of X involving two cutpoints k1 and k2 of the
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Fig. 1. Proportion of observations with Y = 1 in each category of X : m1k/mk , k = 1, . . . , K . N0 =N1 = 30, m1 =m2 =m3 =m4 =m5 =m6 = 10.
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form {k1 < X�k2} vs. {X�k1 ∪ X > k2}. The set K of the possible pairs of cutpoints is denoted as

K = {(k1, k2)|1�k1 �K − 1; k1 + 1�k2 �K}.
Note that the splits involving only one cutpoint of the type {X�k1} vs. {X > k1} are a special case corresponding to
k2 = K . The usual Chi-squared statistic for 2 × 2 contingency tables computed from Table 1 is denoted as �2

k1,k2
. It can

be written as

�2
k1,k2

= N(n1n4 − n2n3)
2

(n1 + n2)(n3 + n4)(n1 + n3)(n2 + n4)
. (2.1)

In this paper, we consider the Chi-squared statistic obtained by selecting the pair of cutpoints (k1, k2) ∈ K maximizing
�2
k1,k2

:

�2
max = max

(k1,k2)∈K
�2
k1,k2

. (2.2)

The rest of Section 2 deals with the computation of the exact distribution of �2
max under the null-hypothesis of no

association between X and Y, given N0, N1, m1, . . . , mK . Note that N0, N1, and m1, . . . , mK can be seen as fixed
distribution parameters. For simplification, we use the notation F(d) = PH0(�

2
max �d) throughout the paper.

2.2. The naive exact approach

Let us consider the
(

N
N1

)
ways to draw N1 out of N observations, which are denoted as ‘configurations’ in the rest

of this section. Let C(d) denote the set of the configurations yielding �2
max > d and c(d) its cardinal number. The

probability F(d) = PH0(�
2
max �d) is obtained as

F(d) = PH0(�
2
max �d) = 1 − c(d)(

N
N1

) ,

since all the configurations are equally likely under the null-hypothesis. The naive exact approach to compute c(d)

consists of enumerating all the
(

N
N1

)
configurations and computing �2

max for each of them. Since �2
max depends only

on m11, . . . , m1K and not on the arrangement of the observations with Y = 1 within each category, the computational

complexity may be reduced by enumerating the possible vectors (m11, . . . , m1K) instead of all
(

N
N1

)
configurations. By

possible vectors, we mean vectors of positive integers summing to N1, such that m1k �mk , for k=1, . . . , K . For a fixed

vector (m11, . . . , m1K), the number of configurations is given as
∏K

k=1

(
mk

m1k

)
. Enumerating all the possible vectors

(m11, . . . , m1K) and computing the value of �2
max and the number of configurations for each of them is computationally

prohibitive, even for moderate N and K. Storage requirements turn out to exceed the capacity of modern computers,
since a huge integer has to be stored for each of the possible vectors (m11, . . . , m1K), whose number grows with NK .

In the next section, a faster algorithm for computing c(d) is presented.

2.3. A novel fast algorithm

The novel algorithm is based on two ideas: (i) the reformulation of the inequation �2 > d in terms of boundary
functions (see Section 2.3.1), (ii) the conversion of the two-cutpoint problem into several one-cutpoint problems (see
Section 2.3.2).

2.3.1. Boundary functions
Suppose we split the available sample of size N into two complementary sets A and A of size NA and N − NA,

respectively. Let m1A denote the number of observations from A with Y = 1. The Chi-squared statistic yielded by this
split is given as

�2 = N(m1A(N0 − NA + m1A) − (NA − m1A)(N1 − m1A))2

N0N1NA(N − NA)
.
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Via expensive but simple computations (Boulesteix, 2006b), it can be shown that

�2 > d ⇔
{

m1A > f+(NA)

or
m1A < f−(NA),

(2.3)

where f+ and f− are functions that depend on N0, N1 and d:

f�+(t) = N1t

N
+ N0N1

√
d

N

√
i

N

(
1 − i

N

) (
1

N0
+ 1

N1

)
,

f�−(t) = N1t

N
− N0N1

√
d

N

√
i

N

(
1 − i

N

) (
1

N0
+ 1

N1

)
.

Note that the generalization of our method to other maximally selected criteria (or minimally selected p-values) is done
by replacing f�+ and f�− by appropriate functions f+ and f− derived from the definition of the considered association
statistic. For instance, f+ and f− are derived by Strobl et al. (2007) for the Gini gain criterion (Breiman et al., 1984)
used for split selection in many recursive partitioning algorithms.

The next section presents an efficient algorithm to compute c(d) based on Eq. (2.3).

2.3.2. Converting the two-cutpoint problem into a one-cutpoint problem
The principle underlying our algorithm consists of decomposing C(d) into disjoint sets by recoding X into pseudo-

variables X(1), . . . , X(K−1), as illustrated below for the case K = 6. Recoding is performed such that the smallest and
the largest values of X are coded using consecutive numbers. For k = 1, . . . , K − 1, let X(k) denote the variable taking
the value

X(k) = �(k)(X),

where �(k) is the permutation defined by

�(k)(i) = i if i�k,

=K − i + k + 1 if i > k.

Note that we have X = X(K−1). As an example, for K = 6, the six categories 1, 2, 3, 4, 5, 6 are recoded successively
as 1, 6, 5, 4, 3, 2 (X(1)), 1, 2, 6, 5, 4, 3 (X(2)), 1, 2, 3, 6, 5, 4 (X(3)) and 1, 2, 3, 4, 6, 5 (X(4)). The double inequation
a < X�b is then equivalent to X(a) > a + (K − b), for all a = 1, . . . , K − 1 and b = a + 1, . . . , K . Using the
pseudo-variables X(1), . . . , X(K−1), we have thus transformed our two-cutpoint problem into K − 1 one-cutpoint
problems.
C(d) can be decomposed as K − 1 disjoint subsets

C(d) =
K−1⋃
k=1

Ck(d), (2.4)

where Ck(d) (k = 1, . . . , K) denotes the subset of configurations fulfilling the following conditions:

A1. There exists a split of the variable X(k) yielding �2 > d .
For example, if K = 6 and k = 2, at least one of the splits {1}{2, 6, 5, 4, 3}, {1, 2}{6, 5, 4, 3}, {1, 2, 6}{5, 4, 3},
{1, 2, 6, 5}{4, 3}, {1, 2, 6, 5, 4}{3} has to yield �2 > d .

A2. For all k′ < k, the splits of the variable X(k′) yield �2 �d (hence, C1(d), . . . ,CK(d) are disjoint).
For example, if K = 6 and k = 2, the splits {1}{6, 5, 4, 3, 2}, {1, 6}{5, 4, 3, 2}, {1, 6, 5}{4, 3, 2}, {1, 6, 5, 4}{3, 2}
and {1, 6, 5, 4, 3}{2} (corresponding to splits of X(1)) have to yield �2 �d.
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Since C1(d), . . . ,CK(d) are disjoint, we have

c(d) =
K−1∑
k=1

ck(d),

where ck(d) is defined as ck(d) = |Ck(d)|. For k = 1, A2 is not relevant and ck(d) is the number of configurations
satisfying A1. It can be efficiently computed based on the method for maximally selected Chi-squared statistics for
ordinal variables proposed by Boulesteix (2006b), since X(1) is an ordinal variable. We refer to Boulesteix (2006b) for
a description of the algorithm.

The rest of this section presents a new algorithm to compute ck(d) for k > 1 for d �0. For a fixed k = 1, . . . , K − 1,
Ck(d) may also be decomposed into K − k disjoint subsets Ck,k(d), . . . ,Ck,K−1(d):

Ck(d) =
K−1⋃
i=k

Ck,i(d), (2.5)

where Ck,i(d) denotes the subset of configurations out of Ck(d) for which the two following conditions are fulfilled.

B1. The split {X(k) � i} vs. {X(k) > i} yields �2 > d .
For example, if K = 6, k = 2 and i = 4, the split {1, 2, 6, 5}{4, 3} has to yield �2 > d .

B2. For all i′ < i, the split {X(k) � i′} vs. {X(k) > i′} yields �2 �d.
For example, if K = 6, k = 2 and i = 4, the splits {1}{2, 6, 5, 4, 3}, {1, 2}{6, 5, 4, 3} and {1, 2, 6}{5, 4, 3} have to
yield �2 �d.

In Eq. (2.5), the index covers k, . . . , K − 1. It can be explained as follows. If the split {X(k) � i} vs. {X(k) > i} (i < k)
yields �2 > d, then the split {X(i) � i} vs. {X(i) > i} also yields �2 > d and the considered configurations are not in
Ck(d) but in Ci (d). Note that this is a consequence of the definition of the permuted variables X(1), . . . , X(K−1).

For fixed i and k > 1, ck,i(d) = |Ck,i(d)| is computed as follows:

ck,i(d) =
∑

i1∈Ik,i (d)

(
m�(k)(1)

i1

)
·
⎛
⎝ ∑

i2∈Ik,i (d,i1)

(
m�(k)(2)

i2

)
· · ·

⎛
⎝ ∑

iK∈Ik,i (d,i1,...,iK−1)

(
m�(k)(K)

iK

)⎞
⎠ · · ·

⎞
⎠ , (2.6)

where the integers i1, . . . , iK correspond to the numbers of observations with Y = 1 in the categories �(k)(1), . . . ,

�(k)(K), respectively, and Ik,i(d, i1, . . . , ij ) may be seen as the allowed interval for ij+1, given the numbers i1, . . . , ij
of observations with Y = 1 within the categories X = �(k)(1), . . . , �(k)(j).

For fixed k, i and j, the interval Ik,i(d, i1, . . . , ij ) is obtained by eliminating from {0, . . . , m�(k)(j+1)} the values for
which at least one of the following conditions is violated:

C1. The split {X(k) � i} vs. {X(k) > i} yields �2 > d (corresponding to B1).
C2. The splits {X(k′) � i′} vs. {X(k′) > i′}, for k′ < k and i′ = k′, . . . , K − 1 yield �2 �d (corresponding to A2).
C3. The splits {X(k) � i′} vs. {X(k) > i′}, for i′ < i, yield �2 �d (corresponding to B2).

Note that, in general, it may be impossible to determine whether C1–3 are fulfilled or not without fixing ij+1, . . . , iK−1.
At this point we only eliminate from {0, . . . , m�(k)(j+1)} those values for which we can already tell that they lead to
violation of C1–3. From a theoretical point of view, the result of the computation of ck,i(d) would be the same if C1–3
were checked only in the very end, once all i1, . . . , iK−1 are fixed. But then the method would be essentially almost
as complex as the naive method. Immediately eliminating those values from Ik,i(d, i1, . . . , ij ) for which we already
know that they violate C1, C2 or C3 is a computational trick that reduces the complexity considerably.

The intervals Ik,i(d, i1, . . . , ij ) are derived using the functions f+ and f− defined in Section 2.3.1. Let us explain the
principle based on the example of I2,4(d, i1, i2, i3). For K = 6 and k = 2, we have �(2)(1)= 1, �(2)(2)= 2, �(2)(3)= 6,
�(2)(4)= 5, �(2)(5)= 4, �(2)(6)= 3. I2,4(d, i1, i2, i3) is the allowed interval for the number of observations with Y = 1
in category X =�(2)(4)=5, given the numbers i1, i2, i3 of observations with Y =1 in categories 1, 2, 6. C1 holds if the
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split {X(2) �4} vs. {X(2) > 4} yields �2 > d . Out of the m1 +m2 +m6 +m5 observations with X(2) �4, i1 + i2 + i3 + i4
observations have Y = 1. Thus, C1 holds if and only if

i4 > f+(m1 + m2 + m6 + m5) − (i1 + i2 + i3)

or

i4 < f−(m1 + m2 + m6 + m5) − (i1 + i2 + i3).

These inequations yield the values of i4 for which C1 does not hold. Similarly, for given i1, i2, i3, violation of C2
and C3 can be simply reformulated in terms of i4, thus yielding the interval I2,4(d, i1, i2, i3). The other intervals
Ik,i(d, i1, . . . , ij ) are derived based on the same principle.

Computation time can be spared by computing and storing
(

mk

j

)
, for k=1, . . . , K and j =0, . . . , mk before applying

Eq. (2.6).
After computation of ck,i(d), for k = 1, . . . , K − 1 and i = k, . . . , K − 1, c(d) is obtained as their sum: since

Ck,k(d), . . . ,Ck,K−1(d) are disjoint, we have

ck(d) =
K−1∑
i=k

ck,i(d),

and thus

c(d) =
K−1∑
k=1

K−1∑
i=k

ck,i(d).

Finally, F(d) is given as

F(d) = PH0(�
2
max �d) = 1 −

∑K−1
k=1

∑K−1
i=k ck,i(d)(
N
N1

) .

Note that our method computes the distribution function F(d) at a single value d. If the full distribution is needed, the
algorithm should be run several times. In the case of a very small N and very small K, it might be faster to use the
naive method, which directly yields the full distribution of the maximally selected Chi-squared statistic. However, as
discussed in the next section, the naive method becomes unfeasible for increasing N and K. In the next section, we
discuss the advantages of our novel algorithm over the naive exact method in terms of computational complexity and
memory requirements.

2.4. Computation time

In this section, the computation time of our novel algorithm is compared to the naive approach for various parameter
combinations. Table 2 gives the elapsed time (rounded to the nearest second) as output by theR functionsystem.time
for both approaches.

• In contrast to the naive approach, the computation time for the new algorithm increases with d. This can be explained
as follows. For small values of d, the set C1(d) is large. C2(d), . . . ,CK−1(d) are then small, because the sets Ck(d)

are disjoint. Since the computation of c1(d) based on the method described in Boulesteix (2006b) is much faster
than that of ck(d) (k > 1), the overall computation time is larger for large d values.

• With both approaches, the computation time is larger if the X categories have the same numbers of observations than
in the unbalanced case.

• With both approaches, the computation time is slightly larger if N0 = N1 than if N0 	= N1.
• In all situations, the novel algorithm is much more efficient than the naive approach. The difference between novel

algorithm and naive approach increases with N and K.
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Table 2
Elapsed time (rounded to the nearest 1/100 second) for the naive approach (left) and our new algorithm (right) to compute F(d) = PH0 (�

2
max �d),

given N0, N1, m1, . . . , mK

m1, . . . , mK N0, N1 d Naive exact approach Novel exact algorithm

10,10,10,10 20,20 0 5.5 0.10
2 5.5 0.14

10 5.5 0.19

4,16,4,16 20,20 0 3.0 0.03
2 3.0 0.08

10 3.0 0.13

10,10,10,10 10,30 0 2.6 0.01
2 2.6 0.08

10 2.6 0.08

20,20,20,20 40,40 0 40 0.08
2 40 0.56

10 40 1.2

8,8,8,8,8 20,20 0 55 0.07
2 55 0.8

10 55 1.2

10,10,10,10,10 25,25 0 90 0.08
2 90 1.5

10 90 3.0

8,8,8,8,8,8 24,24 0 810 0.11
2 810 5.7

10 810 14

10,10,10,10,10,10 30,30 0 1500 0.14
2 1500 12

10 1500 42

For larger values of N and K, the naive approach rapidly becomes prohibitive. In contrast, the new exact algorithm
can be easily applied to sample sizes larger than 100 and to X variables with up to eight categories. It can roughly be
explained as follows:

• The novel algorithm takes into account the ordinality of X by using the fast method for ordinal splits given in
Boulesteix (2006b) in the computation of c1(d).

• Only the configurations yielding P(�2
max > d) are enumerated and counted.

• Through the use of the boundary functions f+ and f−, �2
max is not computed for each vector (m11, . . . , m1K).

In the most favorable case (small d), the complexity of the novel algorithm is essentially polynomial in N since the
problem reduces to computing c1(d), see Strobl et al. (2007). With growing d, complexity increases but remains
far under NK , since the size of the intervals Ik,i(d, i1, . . . , ij ) decreases strongly with d. Note that the algorithm
applies to the case of ordinal variables with a small number of categories only, because it becomes expensive with
increasing K.

3. Simulation study

We implemented our method in the language R. Our implementation is included in the freely available R package
exactmaxsel as a function Ford2. Before starting the power study addressed in the next section, we outline how
the correctness of our novel combinatorial method can be assessed based on simulations. For fixed marginal conditions
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Table 3
Performance of both methods for the one-cutpoint design

Effect One-cutpoint method Novel method

Weak Med. Strong Weak Med. Strong

Marginal 6 19 52 7 14 43
Central 15 41 74 12 33 70

N0, N1, m1, . . . , mk , a large number of data sets, say, 10 000 are generated under the null-hypothesis and the maximal
Chi-squared statistic is derived for each of the 10 000 data sets. This yields an estimate of the distribution function of the
maximally selected Chi-squared statistic given N0, N1, m1, . . . , mk . For the same values of N0, N1 and m1, . . . , mK ,
the theoretical distribution function is computed via our novel combinatorial approach. For example, after installation of
the exactmaxsel package, the value of the distribution function at d =1.5, for N0 =N1 =30 and m1 =· · ·=m5 =12
is obtained by

> library(exactmaxsel)

> Ford2(1.5,n0= 30,n1= 30,A= c(12,12,12,12,12),statistic= "chi2")

Extensive simulations involving different values of N0, N1, m1, . . . , mK , are conducted. The obtained empirical dis-
tribution is always perfectly consistent with the theoretical distribution computed using our novel combinatorial pro-
cedure (due to space constraints the results are not shown but are easily replicable using the function call stated
above).

A simulation study is conducted to evaluate the power of our novel method to detect non-monotonic association with
a two-cutpoint pattern. The performance of our new method is compared to that of the method designed for one cutpoint
by (Boulesteix, 2006b). For all simulations, we set the total sample size to N = 20 and generate the ordinal predictor
X from a multinomial distribution with K = 6 categories and equal probabilities for each category. Similar results can
be obtained with other settings (different values for K and N). The conditional distribution of Y given X is varied across
the simulation experiments. We examine two settings. In the first setting, predictors with one cutpoint (thus inducing a
monotonic) are simulated. In the second setting, predictors with two cutpoints (thus inducing a non-monotonic ordering)
are simulated. The simulation designs are described in detail below.

(1) One-cutpoint design: A single cutpoint is fixed on the range of X. On the left of this cutpoint, the response Y is
sampled from a Bernoulli distribution with low probability of success P(Y = 1)=pl . On the right of the cutpoint,
Y is sampled from a Bernoulli distribution with a high probability of success P(Y = 1) = pr . In the different
experimental conditions, the cutpoint is set either at a marginal position (between the first and second category of
X) or at a central position (between the third and fourth category of X). The difference between pl and pr is varied
in the simulation experiments. The values of pl and pr are set to simulate a weak effect (0.2, 0.4), a medium effect
(0.2, 0.6) or a strong effect (0.2, 0.8) of X.

(2) Two-cutpoint design: Two cutpoints are fixed on the range of X, either both at marginal positions on the same side
(between the first and second and between the second and third category of X), both at symmetric central positions
(between the second and third and between the fourth and fifth category of X) or both at symmetric marginal
positions (between the first and second and between the fifth and sixth category of X). The response Y is sampled
from a Bernoulli distribution with low probabilities of success pl and pr on the left of the left cutpoint and on the
right of the right cutpoint, respectively, and high probability of success pm between the two cutpoints. The values
of pl , pm and pr are set to simulate a weak effect (0.2, 0.4, 0.2), a medium effect (0.2, 0.6, 0.2), a strong effect
(0.2, 0.8, 0.2) or a mixed effect (0.2, 0.8, 0.6).

The percentage of simulation iterations (out of 100) in which association is detected at the standard significance level
of 0.05 is displayed in Tables 3 (one-cutpoint design) and 4 (two-cutpoint design). This percentage may be seen as
an indicator of the power of the considered method to discover the association patterns. It can be observed from
Table 3 that our method can often successfully detect association in the two-cutpoint design. In the one-cutpoint design,
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Table 4
Performance of both methods for the two-cutpoint design

Effect One-cutpoint method Novel method

Weak Med. Strong Mixed Weak Med. Strong Mixed

Both marginal 6 15 32 31 7 30 62 24
Symmetric central 4 12 27 45 16 30 63 45
Symmetric marginal 7 11 38 41 9 26 58 41

Table 5
Varicella complications

Age category (in years) 1:0–1 2:1–2 3:2–3 4: > 3

No complications (Y = 0) 10 7 9 59
Complications (Y = 1) 6 19 12 48

Table 3 shows that our method sometimes detects association, but the power is of course lower than using the simpler
method designed for one cutpoint by Boulesteix (2006b). Unsurprisingly, the power is higher for strong associations
than for weak associations, and for central cutpoints than for marginal cutpoints. Table 4 shows that our novel method
performs well to detect association in the two-cutpoint design. The power of our approach is higher than the power of
the method for one cutpoint in all experimental designs, except for the case of mixed effects with both cutpoints set
at marginal positions (which may be seen as intermediate between the one-cutpoint and the two-cutpoint setting). The
power improvement is particularly striking (up to +150%) in the case of symmetric central cutpoints. In a word, our
method may not be used to detect association patterns in general settings, since it results in a loss of power if there is
only one true cutpoint. However, it is able to detect two-cutpoint patterns with high power, even for very small sample
sizes, where methods assuming monotonic dependence fail.

4. The varicella study

Varicella (chickenpox) is a highly communicable disease caused by the varicella-zoster virus.Although it is commonly
regarded as a mild childhood illness, serious complications can occur. The risk of serious consequences is believed
to depend on the age of the patient (Banz et al., 2003). For analyzes using our new approach, we consider a data
set including N = 170 children between 0 and 18 years who were diagnosed with varicella. N1 = 85 of them had
complications, whereas the remaining N0 = 85 children are controls (no complications). This data set was sampled
from a larger data set presented by Wagenpfeil et al. (2004) in the context of a large retrospective epidemiological
study. Table 5 gives the number of cases without and with complications in each age category.

The maximal Chi-squared statistic is obtained for the cutpoints k1 = 1 and k2 = 3 and the corresponding p-value is
praw = 1.0 × 10−2. This approach overestimates the association between age and risk of complications, because the
p-value is not corrected for optimal choice of cutpoints. Our novel method yields the corrected p-value p=3.8×10−2.
This result suggests that varicella is more serious for children between one and three years than for younger children
(who may be protected by maternal antibodies) and elder children. Approaches that assume a monotonic trend (or
one cutpoint) yield larger p-values: using the approach based on maximally selected Chi-squared statistics for ordinal
predictors with one cutpoint by Boulesteix (2006b) gives a p-value of p = 0.17, whereas the classical Chi-squared test
for trend in proportions (as implemented in the R function prop.trend.test) yields a p-value of 0.27, thus both
failing to detect association. In a word, the distribution of maximally selected Chi-squared statistics in the context of
two cutpoints may be used to correct a minimally selected p-value and has higher power than monotonic approaches
to detect association in the case of a non-monotonic association with two underlying cutpoints.
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5. Discussion

In this article, we propose a novel combinatorial method for computing the exact distribution of the maximally
selected Chi-squared statistic in the context of a non-monotonic association with a binary response. The method can be
used to adjust the p-value of the Chi-squared test for multiple comparisons when two cutpoints are selected from the
range of X to maximize the Chi-squared statistic. As shown in the real data example, our approach provides an efficient
tool to assess the statistical significance of a pair of cutpoints. It can detect association in the case of an umbrella ordering
with two underlying cutpoints, where methods that assume monotonic dependence (one cutpoint) fail. Unsurprisingly,
the simulations also show that our method results in a loss of power if there is only one true cutpoint. Thus, it is not
appropriate as a general test of independence.

From a practical point of view, our new method may be useful in two important situations. First, it avoids the biased
reporting of low p-values, when the cutpoints are chosen optimally. Secondly, if the investigator suspects a dependence
pattern between X andY but cannot assess it with classical monotonic approaches, our method may be helpful to confirm
the (non-monotonic) association between X and Y. In practice, investigators sometimes notice two candidate cutpoints
based on descriptive plots and want to know if this pattern is relevant or only due to chance. This problem may be
addressed with our method. Note that, if one applies successively the one-cutpoint and the two-cutpoint methods or
choose the method after observation of the data, adjustment for multiple testing is recommended. As a two-cutpoint
method, it could also be applied to outcomes associated with points around a circle, e.g., in astronomy.Another potential
application is recursive partitioning. In the last few years, procedures based on maximally selected statistics have been
successively applied to regression and classification trees, for instance in Shih (2004), Lausen et al. (2004), Strobl et al.
(2007), to avoid the variable selection bias outlined by e.g., Loh and Shih (1997). Our method could become a powerful
exact tool to assess complex splits in p-value adjusted trees.
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