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Abstract

Partial Least Squares (PLS) dimension reduction is known to give good prediction
accuracy in the context of classification with high-dimensional microarray data. In this
paper, the classification procedure consisting of PLS dimension reduction and linear dis-
criminant analysis on the new components is compared with some of the best state-of-the-
art classification methods. Moreover, a boosting algorithm is applied to this classification
method. In addition, a simple procedure to choose the number of PLS components is sug-
gested. The connection between PLS dimension reduction and gene selection is examined
and a property of the first PLS component for binary classification is proved. In addition,
we show how PLS can be used for data visualization using real data. The whole study is
based on 9 real microarray cancer data sets.
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1 Introduction

The output of n microarray experiments can be summarized as a n×p data ma-
trix, where p is the number of analyzed genes. p is always much larger than the
number of experiments n. An important application of microarray technology
is tumor diagnosis, i.e. class prediction. High-dimensionality makes the appli-
cation of most classification methods difficult, if not impossible. To overcome
this problem, one can either extract a small subset of interesting variables (gene
selection) or construct m new components which summarize the original data
as well as possible, with m < p (dimension reduction).

Gene selection has been studied extensively in the last few years. The most
commonly used gene selection procedures are based on a score which is calcu-
lated for all genes individually. Then the genes with the best scores are selected.
These methods are often denoted as univariate gene selection. Several selection
criteria have been used in the literature, e.g. the t statistic (Hedenfalk et al.,
2001), Wilcoxon’s rank sum statistic (Dettling and Bühlmann, 2003) or Ben
Dor’s combinatoric ’TNoM’ score (Ben-Dor et al., 2000). When using a test
statistic as criterion, it is useful to adjust the p-values with a multiple testing
procedure (Dudoit et al., 2003). The main advantages of gene selection are its
simplicity and interpretability. Gene selection procedures output a list of rel-
evant genes which can be experimentally analyzed by biologists. Moreover,
univariate gene selection is generally quite fast.

The scores mentioned in the previous paragraph are all based on the associa-
tion of individual genes with the classes. Interactions and correlations between
genes are omitted, although they are of great interest in system biology. For
illustration, let us consider three genes A, B and C. A relevance score like the t
statistic might tell us: gene A is more relevant than gene B and gene B is more
relevant than gene C for classification. Now suppose we want to select two of
these three genes to perform classification. The t statistic does not tell us if it is
better to select A and B, A and C or B and C. A few sophisticated procedures
intend to overcome this problem by selecting optimal subsets with respect to
a given criterion instead of ranking the genes. Bo and Jonassen (2002) look
for relevant pairs of genes, whereas Li et al. (2001) want to find optimal gene
subsets via genetic algorithms. However, these methods generally suffer from
overfitting: the obtained gene subsets might be optimal for the training data,
but they do not perform as well on independent test data. Moreover, they are
based on computationally intensive iterative algorithms and thus very difficult
to interpret and implement.

Dimension reduction is a wise alternative to variable selection in order to
overcome this dimensionality problem. It is also denoted as feature extraction.
Unlike gene selection, such methods use all the genes included in the data set.
The whole data are projected onto a low-dimensional space, thus allowing a
graphical representation. The new components often give information or hints
about the data’s intrinsic structure, although there is no standard concept and
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procedure to do this. Dimension reduction is sometimes criticized for its lack of
interpretability, especially for applied scientists who often need more concrete
answers about individual genes. In this paper, we show that PLS dimension
reduction is tightly connected to gene selection.

Dimension reduction methods for classification can be categorized into lin-
ear and nonlinear, supervised and unsupervised methods. Intuitively, supervised
methods, i.e. methods which use the class information of the observations to
construct new components, should be preferred to unsupervised methods, which
work only ’by chance’ in ’good’ data sets (Nguyen and Rocke, 2002). Since
nonlinear methods are generally computationally intensive and lack robustness,
they are not recommended for microarray data analysis. To our knowledge,
the only well-established supervised linear dimension reduction method work-
ing even if n < p is the Partial Least Squares method (PLS). PLS is a linear
method in the sense that the new components are linear combinations of the
original variables. However, the coefficients defining the new components are
not linear. Another approach denoted as between-group analysis has been pro-
posed by Culhane et al. (2002), but it turns out that it is strongly related to
PLS. Principal component analysis (Ghosh, 2002; Kahn et al., 2001) is an un-
supervised method: its goal is to find uncorrelated linear transformations of the
original variables which have high variance. As an unsupervised method, it is
inappropriate for classification. Sufficient dimension reduction for classifica-
tion is reviewed in Dennis and Lee (1999) and applied to microarray data in
Chiaromonte and Martinelli (2001). Sufficient dimension reduction is a super-
vised approach: the goal is to find components which summarize the predictor
variables such that the class and the predictor variables are independent given
the new components. This method cannot be applied if p > n. A few other
dimension reduction methods for classification are reviewed in Hennig (2004).
Some of them, such as discriminant coordinates or the Bhattacharyya distance
approach cannot be applied if p > n. The mean/variance difference coordinates
approach is introduced in Young et al. (1987). It can theoretically be applied if
p > n, but it requires the eigendecomposition of a p × p empirical covariance
matrix, which is not recommended when p >> n. To our knowledge, PLS is
the only fast supervised dimension reduction method which can handle a huge
number of predictor variables.

It is known that PLS dimension reduction can be used for classification
problems in the context of microarray data analysis (Nguyen and Rocke, 2002;
Huang and Pan, 2003). However, these papers do not include any extensive
comparative study of classification methods. Moreover, they treat the PLS tech-
nique as a ’black box’ which is only meant to improve classification accuracy,
without concern for the components themselves. In this paper, two aspects of
PLS dimension reduction are examined. First, its classification performance
is compared with the classification performance of top-ranking methods which
have already been studied in the literature. Second, the connection between
PLS dimension reduction and gene selection is examined.
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In recent years, aggregation methods such as bagging (Breiman, 1996) and
boosting (Freund, 1995) have been extensively analyzed. They lead to spec-
tacular improvements of prediction accuracy when they are applied to classi-
fication problems. In microarray data analysis, accuracy improvement is also
observed (Dettling and Bühlmann, 2003; Dudoit et al., 2002). So far, aggre-
gating methods have been applied with weak and unstable classifiers such as
stumps or classification trees. To our knowledge, boosting has never been used
with dimension reduction techniques. In this paper, we apply a classical boost-
ing algorithm (AdaBoost) in the framework of PLS dimension reduction.

The paper is organized as follows. PLS dimension reduction and boosting
are introduced in section 2. In Section 3, the data are introduced and a few
examples of data visualization using PLS dimension reduction are given. Clas-
sification results using PLS, PLS with boosting and various other methods are
presented in section 4. In section 5, the connection between PLS and gene
selection is studied and an interesting property of the first PLS component is
proved in the case of binary responses.

In the following, X1, . . . , Xp denote the continuous predictors (genes) and
x = (X1, . . . , Xp)

T the corresponding random vector. xi = (xi1, . . . , xip)
T

for i = 1, . . . , n denote independent identically distributed realizations of the
random vector x. Each row of the n × p data matrix X ∈ R

n×p contains a
realization of x.

2 Dimension reduction and classification with PLS

2.1 Outline of the method

Suppose we have a learning set L consisting of observations whose class is
known and a test set T consisting of observations whose class has to be pre-
dicted. The data matrices corresponding to L and T are denoted as XL and
XT , respectively. The vector containing the classes of the observations from L
is denoted as YL. A classification method can be formalized as a function δ of
XL, YL and the vector of predictors xnew,i corresponding to the ith observation
from the test set:

δ(.,XL,YL) : R
p → {1, . . . , K}

xnew,i → δ(xnew,i,XL,YL).

In this section, we describe briefly the function δ which is discussed in the paper.
From now on, it is denoted as δPLS . δPLS consists of two steps.

The first step is dimension reduction, which finds m appropriate linear trans-
formations Z1, . . . , Zm of the vector of predictors x, where m has to be cho-
sen by the user (this topic is discussed in Section 2.3). In the whole paper,
a1, . . . , am denote the p×1 vectors which are used to construct the linear trans-
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formations Z1, . . . , Zm:
Z1 = aT

1 x,
. . . = . . . ,
Zm = aT

mx.

In this paper, the vectors a1, . . . , am are determined using the SIMPLS algo-
rithm (de Jong, 1993), which is one of the variants of PLS dimension reduction.
The SIMPLS algorithm is introduced in Section 2.2. The linear transforma-
tions Z1, . . . , Zm are denoted as new components, for consistency with the PLS
literature.

The second step is linear discriminant analysis using the new components
Z1, . . . , Zm as predictor variables. Linear discriminant analysis is described
in Section 4. One could use another classification method such as logistic re-
gression. However, logistic regression is known to give worse results for some
specific data configurations. For example, logistic regression does not perform
well when the different classes are completely or quasi-completely separated
by the predictor variables, as claimed by Nguyen and Rocke (2002). Since this
configuration is quite common in microarray data, logistic regression is not a
good choice. Linear discriminant analysis, which is not recommended when
the number of predictor variables is large (see Section 4), performs well when
applied to a small number of approximately normally distributed PLS compo-
nents.

The procedure to predict the class of the observations from T using L can
be summarized as follows.

1. Determine the vectors a1, . . . , am using the SIMPLS algorithm (see Sec-
tion 2.2) on the learning set L. If A denotes the p × m matrix containing
the vectors a1, . . . , am in its columns, the matrix ZL of new components
for the learning set is obtained as

ZL = XLA. (1)

2. Compute the matrix ZT of new components for the test data set as

ZT = XTA. (2)

3. Predict the class of the observations from T by linear discriminant anal-
ysis, using Z1, . . . , Zm as predictor variables. The classifier is built using
only ZL.

This two-step approach is applied to microarray data by Nguyen and Rocke
(2002). In this paper, we use the SIMPLS algorithm by de Jong (1993), which
can be seen as a generalization for multicategorical response variables of the
algorithm used by Nguyen and Rocke (2002). The SIMPLS algorithm is pre-
sented in the next section.
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2.2 The SIMPLS algorithm

Partial Least Squares (PLS) is a wide family of methods originally developed
as a multivariate regression tool in the context of chemometrics (Martens and
Naes, 1989). PLS regression was later studied by statisticians (Stone and Brooks,
1990; Garthwaite, 1994; Frank and Friedman, 1993). An overview of the his-
tory of PLS regression is given in Martens (2001). PLS regression is especially
appropriate to predict a univariate or multivariate continuous response using a
large number of continuous predictors. The underlying idea of PLS regression
is to find uncorrelated linear transformations of the original predictor variables
which have high covariance with the response variables. These linear trans-
formations can then be used as predictors in classical linear regression models
to predict the response variables. Since the p original variables are summa-
rized into a small number of relevant new components, linear regression can
be performed even if the number of original variables p is much larger than
the number of available observations. The different PLS algorithms differ in
the definition of the linear transformations. Here, the focus is on the SIMPLS
algorithm, because it can handle both univariate and multivariate variables.

If Y is a binary response, it can be treated as a continuous response variable,
since PLS regression does not require any distributional assumption. However,
if Y is a multicategorical variable, it cannot be treated as a continuous response
variable. The problem can be circumvented by dummy-coding. The multicate-
gorical random variable Y is transformed into a K-dimensional random vector
y ∈ {0, 1}K as follows:

yi1 = 1 if Yi = k,
yik = 0 otherwise,

where yi = (yi1, . . . , yiK)T denotes the ith realization of y. In the following,
y denotes the random variable Y if Y is binary (K = 2) or the K-dimensional
random vector as defined above if Y is multicategorical (K > 2).

The SIMPLS algorithm proposed by de Jong (1993) computes the vectors
a1, . . . , am defined as follows.

Definition 1 Let ˆCOV denote the empirical covariance computed from the
available data set. a1 and b1 are the unit vectors maximizing ˆCOV (aT

1 x,bT
1 y).

For all j = 2, . . . , m, aj and bj are the unit vectors maximizing ˆCOV (aT
j x,bT

j y)

subject to the constraint ˆCOV (aT
j x, aT

i x) = 0 for all i = 1, . . . , j − 1.

In words, the SIMPLS algorithm computes linear transformations of x and lin-
ear transformations of y which have maximal covariance, under the constraint
that the linear transformations of x are mutually uncorrelated. In PLS regres-
sion, a multivariate regression model is then built using y as multivariate re-
sponse variable and aT

1 x, . . . , aT
mx as predictors, hence the name PLS regres-

sion. The regression coefficients for each response variable and each original
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variable are also output by the SIMPLS algorithm. However, they are not used
in this paper, since we use the SIMPLS algorithm for dimension reduction only:
our focus is on the new components Z1, . . . , Zm, which are then used in linear
discriminant analysis.

The predictor variables as well as the response variables have to be cen-
tered to have zero mean before running the SIMPLS algorithm. The R library
pls.pcr includes an implementation of the SIMPLS algorithm, which is used
in this paper. Except the number of PLS components, which is discussed in
Section 2.3, PLS dimension reduction with SIMPLS does not involve any free
parameter, which makes it very simple to use. To illustrate PLS dimension
reduction, let us consider the following data matrix X:

X1 X2 X3 X4 X5

1 5 4 4 3
2 9 3 2 6
5 6 7 2 7
3 1 2 4 3

and the vector of classes
YT = (1 1 2 2).

After centering Y and the columns of X, the SIMPLS algorithm is applied with
e.g. m = 2. One obtains:

aT
1 = (1.77 −4.86 0.53 0.76 −0.82)

aT
2 = (2.31 3.01 3.02 −1.79 3.45)

The matrix of new components is obtained as

Z = XA,

where A is the 5 × 2 matrix containing a1 and a2 in its columns:

Z1 Z2

−0.20 −0.46
−0.71 0.13

0.33 0.76
0.58 −0.43

.

As can be seen from the matrix Z, Z1 seems to separate the two classes very
well. Z2, which is uncorrelated with Z1, seems to be less relevant. It indicates
that m = 1 might be a sensible choice in this case. With less trivial data,
the second PLS component is often relevant for the classification problem. It
is often difficult to choose the right number m of PLS components to use for
classification. In the following section, we adress the problem of the choice of
m.
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2.3 Choosing the number of components

There is no widely accepted procedure to determine the right number of PLS
components. Here, we propose to use a simple method based on cross-validation.
Suppose we have a learning set L and a test set T . Only the learning set L is
used to choose m. The following procedure is repeated Nrun times: the clas-
sifier δPLS is built using only α% of the observations from L and applied to
the remaining observations, with m taking successively different values. For
each of the Nrun runs, the error rate is computed using only the remaining ob-
servations from L. After Nrun runs, the mean error rate over the Nrun runs
is computed for each value of m. For a more precise description of the mean
error rate, see Section 4.1. The value of m minimizing the mean error rate is
then used to predict the class of the observations from T . In the following, it is
denoted as mopt. In our analysis, we set α to 0.7 for consistency with Section
4 and Nrun = 50, which seems to be a good compromise between computation
time and estimation accuracy. It seems that mopt does not depend highly on the
parameters α and Nrun.

When the procedure described above is used to choose the number of PLS
components, the classification method consisting of PLS dimension reduction
and linear discriminant analysis does not involve any free parameter. Since
boosting is known to improve classification accuracy in many situations, we
suggest applying a boosting strategy to this classification method. Boosting is
briefly introduced in the following section.

2.4 Boosting

Bagging and boosting consist of building a simple classifier using successively
different bootstrap samples. In bagging, the bootstrap samples are based on
the unweighted bootstrap and the predictions are made by majority voting. In
boosting, the bootstrap samples are built iteratively using weights that depend
on the predictions made in the last iteration. An early study focusing on statisti-
cal aspects of boosting is Schapire et al. (1998). A classifier based on a learning
set L containing nL observations is represented in section 2.1 as a function of
the p-dimensional vector of predictors xnew,i:

δ(.,XL,YL) : R
p → {1, . . . , K}

xnew,i → δ(xnew,i,XL,YL).

In boosting, perturbed learning sets L1, . . . ,LB are formed adaptively by draw-
ing from the learning set L at random, where the probability of an observation
to be selected in Lk depends on the prediction made by δ(.,XLk−1

,YLk−1
). Ob-

servations which are uncorrectly classified by δ(.,XLk−1
,YLk−1

) have greater
probability to be selected in Lk.

The discrete AdaBoost procedure was proposed by Freund (1995). In the
first iteration, the weights are initialized to w1 = · · · = wnL

= 1/nL. In
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the following we show the k-th step of the algorithm as described by Tutz and
Hechenbichler (2004).

Discrete AdaBoost algorithm

1. • Based on the resampling probabilities w1, . . . , wnL
, the learning set

Lk is sampled from L with replacement.

• The classifier δ(.,XLk
,YLk

) is built.

2. The learning set L is run through the classifier δ(.,XLk
,YLk

) yielding an
error indicator εi = 1 if the i-th observation is classified incorrectly and
εi = 0 otherwise.

3. With ek =
∑nL

i=1 wiεi, bk = (1 − ek)/ek and ck = log(bk) the resampling
probabilities are updated for the next step by

wi,new =
wib

εi
k∑nL

j=1 wjb
εj

k

=
wi exp (ckεi)∑nL

j=1 wj exp (ckεj)

After B iterations the aggregated voting for observation xnew is obtained by

arg max
j

(
B∑

k=1

ckI(δ(x,XLk
,YLk

) = j))

In this paper, we propose to apply the AdaBoost algorithm with δ = δPLS with
different numbers of components. To our knowledge, boosting has never be
used in the context of dimension reduction. In the whole study, we use 9 real
microarray cancer data sets which are introduced in the following section.

3 Data

3.1 Data sets

Colon: The colon data set is a publicly available ’benchmark’ gene expression
data set which is extensively described in Alon et al. (1999). The data set con-
tains the expression levels of 2000 genes for 62 patients from two classes. 22
patients are healthy patients and 40 patients have colon cancer.

Leukemia: This data set is introduced by Golub et al. (1999) and contains
the expression levels of 7129 genes for 47 ALL-leukemia patients and 25 AML-
leukemia patients. It is included in the R library golubEsets. After data
preprocessing following the procedure described in Dudoit et al. (2002), only
3571 variables remain. It is easy to achieve excellent classification accuracy on
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this data set, even with quite trivial methods as described in the original paper
by Golub et al. (1999).

Prostate: This data set gives the expression levels of 12600 genes for 50
normal tissues and 52 prostate cancer tissues. We threshold the data and filter
genes as described in Singh et al. (2002). The filtering step leaves us with 5908
genes.

Breast cancer (ER+/ER-): This data set gives the expression levels of 7129
genes for 46 breast cancer patients from which 23 have status ER+ and 23 have
status ER-. It is presented in West et al. (2002).

Carcinoma: This data set comprises the expression levels of 7463 genes
for 18 normal tissues and 18 carcinomas. We standardize each array to have
zero mean and unit variance. For an extensive description of the data set, see
Notterman et al. (2001).

Lymphoma: The data set presented by Alizadeh et al. (2000) comprises the
expression levels of 4026 genes for 62 patients from 3 different classes (B-CLL,
FL and DLBCL). The missing values are inputed as described in Dudoit et al.
(2002) using the function pamr.inpute from the R library pamr (Tibshirani
et al., 2002).

SRBCT: This gene expression data set is presented in Kahn et al. (2001).
It contains the expression levels of 2308 genes for 83 Small Round Blue Cells
Tumor (SRBCT) patients belonging to one of the 4 tumor classes: Ewing fam-
ily of tumors (EWS), non-Hodgkin lymphoma (BL), neuroblastoma (NB) and
rhabdomyosarcoma (RMS).

Breast cancer (BRCA): This breast cancer data set contains the expression
levels of 3227 genes for breast cancer patients with one of the three tumor types:
sporadic, BRCA1 and BRCA2. It is described in Hedenfalk et al. (2001). The
data are preprocessed as described in Simon et al. (2004).

NCI: This dataset comprises the expression levels of 5244 genes for 61
patients with 8 different tumor types: 7 breast, 5 central nervous system, 7
colon, 6 leukemia, 8 melanoma, 9 non-small-cell-lung-carcinoma, 6 ovarian, 9
renal Ross et al. (2000). The data are preprocessed as described in Dudoit et al.
(2002).

In this next section, some of these data sets are visualized graphically using
PLS dimesnion reduction.

3.2 Data Visualization via PLS dimension reduction

An advantage of PLS dimension reduction is the possibility to visualize the
data by graphical representation. For instance, one can plot the second PLS
component against the first PLS component using different colors for each class.
As a visualization method, PLS might be useful for applied researchers who
need simple graphical tools. In the following, we give a few concrete examples
and show briefly and qualitatively that PLS dimension reduction can outline
relevant cluster structures.
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Suppose we have to analyse a data set with a binary response. One of the
classes, e.g. class 2, consists of 2 subclasses: 2a and 2b. In the following,
we try to interpret the PLS components in terms of clusters. For example, the
first PLS component may discriminate between class 1 and class 2a and the
second PLS component between class 1 and class 2b. In order to illustrate
this point, we perform PLS dimension reduction on the whole prostate data set.
We also cluster the observations from class 2 into two subclasses 2a and 2b
using the k-means algorithm on the original variables X1, . . . , Xp. For the k-
means clustering, we set the maximal number of iterations to 10. As can be
seen from Figure 1, the first PLS component separates almost perfectly class 1
and class 2b, whereas the second PLS component separates almost perfectly
class 1 and class 2a. Thus, the two PLS components can be interpreted in
terms of clusters. A similar result can be obtained with the breast cancer data.
We perform PLS dimension reduction on the whole breast cancer data set and
cluster the observations from class 2 into 2a and 2b using the k-means algorithm
on X1, . . . , Xp. The first and the second PLS components are reprensented as
a scatterplot in Figure 2. We observe that the first PLS component can separate
class 1 from class 2 perfectly. The second PLS component separates only 1 and
2a from 2b. Similar results are observed for the carcinoma and the leukemia
data. Thus, for 4 of 5 data sets with binary class, the PLS components can be
easily interpreted in terms of clusters.

However, in our examples, we do not know whether the subclasses 2a and 2b
are biologically interpretable: they are only the output of the k-means clustering
algorithm. Thus, we also perform the same analysis on the lymphoma data
set, for which three biologically interpretable classes are known. Patients with
tumor type DLBCL are assigned to class 1, B-CLL to class 2a and FL to class
2b. PLS dimension reduction is performed as if the class were binary. As can
be seen from Figure 3, the first PLS discriminates between class 1 and class 2,
whereas the second PLS discriminates between class 2a and classes 1 and 2b.

As a conclusion, we recommend the PLS technique as a visualization tool,
because it can outline relevant cluster structures. As can be seen from the figures
presented in this section, the PLS components can be used to predict the class
of new observations. The next section is dedicated to the classification method
δPLS consisting of PLS dimension reduction and linear discriminant analysis.

4 Classification results on real microarray data

4.1 Study design

For each data set, 200 random partitions into a learning data set L containing
nL observations and a test data set T containing the n − nL remaining obser-
vations are generated. This approach for evaluating classification methods was
used in one of the most extensive comparative studies of classification meth-
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Figure 1: First and second PLS components for the prostate data
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Figure 2: First and second PLS components for the breast cancer data
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Figure 3: First and second PLS components for the lymphoma data with 2
classes
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ods for microarray data (Dudoit et al., 2002). It is believed to be more reliable
than leave-one-out cross-validation (Braga-Neto et al., 2004). We fix the ratio
nL/n at 0.7, which is a usual choice. For each partition {L, T }, we predict the
class of the observations from T using δPLS with successively 1,2,3,4,5 PLS
components for the data sets with a binary response. We also use the discrete
AdaBoost boosting algorithm based on the classifier δ = δPLS with 1,2,3 PLS
components. For data sets with multicategorical responses, we use 1,2,3,4,5,6
PLS components for the lymphoma and BRCA data, 1,2,3,4,5,6,8,10 for the
SRBCT data and 1,5,10,15,20 components for the NCI data.

For each approach and for each number of components, the mean error rate
over the 200 partitions is computed using only the test set. Let nTk

denote the
number of observations in the test set Tk, L1, . . . ,L200 denote the 200 learning
sets and T1, . . . , T200 the 200 corresponding test sets. For a given approach,
a given number of components and a given partition, Ŷi denotes the predicted
class of the ith observation of the test set. The mean error rate MER over the
200 partitions is given by

MER =
1

200

200∑

k=1

1

nTk

nTk∑

i=1

I(Ŷi �= Yi), (3)

where I is the standard indicator function (I(A) = 1 if A is true, I(A) = 0
otherwise).

The results are summarized in Tables 1 and 2.
For each partition {Lk, Tk}, the optimal number of PLS components mopt is

estimated following the procedure described in section 2.3 and the error rate of
δPLS with mopt PLS components is computed. The corresponding mean error
rate over the 200 random partitions is given in Table 1 (last column). The can-
didate numbers of components used to determine mopt by cross-validation are
also given in the table for each data set. For the data sets with a binary response,
mopt is chosen from 1, 2, 3, 4, 5. For data sets with a multicategorical response
(except the NCI data), mopt is chosen from 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. For the NCI
data set, which has much more classes, mopt is chosen from 1, 5, 10, 15, 20.

For comparison, the mean error rate obtained with some of the best classi-
fication methods for microarray data is also computed. The first one is nearest-
neighbor classification based on 5 neighbors (5NN). This method can be sum-
marized as follows. For each observation from the test set, the 5 closest observa-
tions (’neighbors’) in the learning set are found and the observation is assigned
to the class which is most common among those k neighbors. Closeness is
measured using a specified distance metric. The most common distance metric,
which we use here, is the euclidean distance metric. Nearest-neighbor classifi-
cation is implemented in the R library class. This method is known to achieve
good classification accuracy with microarray data (Dudoit et al., 2002).

The second method is linear discriminant analysis (LDA), which is also
known to give good classification accuracy (Dudoit et al., 2002). A short de-
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scription of linear discriminant is given in the following. Suppose we have p
predictor variables. The random vector x = (X1, . . . , Xp)

T is assumed to a
multivariate normal distribution within class k (k = 1, . . . , K) with mean µk

and covariance matrix Σk. In linear discriminant analysis, Σk is assumed to
be the same for all classes: for all k, Σk = Σ. Using estimates µ̂k and Σ̂ in
place of µk and Σ, the maximum-likelihood discrimant rule assigns the ith new
observation xnew,i to the class

δ(xnew,i) = arg min
k

(xnew,i − µ̂k)Σ̂
−1(xnew,i − µ̂k)

T . (4)

This approach is usually denoted as linear discriminant analysis, because δ(xnew,i)
is a linear function of the vector xnew,i. In our study, it does not perform as well
as 5NN, SVM and PAM, probably because the estimation of the inverse of Σ̂
is not robust when the number of variables is two large. Thus, the classification
results using linear discriminant analysis are not shown.

The third method is Support Vector Machines (SVM). This method is used
by Furey et al. (2000) and seems to perform well on microarray data. The idea
is to find a separating hyperplan which separates the classes as well as possible
in an enlarged predictor space. This leads to a complex optimization problem
in high dimension. In our study, the optimal hyperplan is determined using the
function svm from the R library e1071 with the default parameter settings.

A short overview of NN, LDA and SVM is given in Hastie et al. (2001).
These three methods require preliminary gene selection. The gene selection is
performed by ranking genes according to the BSS/WSS-statistic, where BSS
denotes the between-group sum of squares and WSS the within-group sum of
squares. For gene j the BSS/WSS-statistic is calculated as

BSSj/WSSj =

∑K
k=1

∑
i:Yi=k(µ̂jk − µ̂j)

2

∑K
k=1

∑
i:Yi=k(xij − µ̂jk)2

,

where µ̂j is the sample mean of Xj and µ̂jk is the sample mean of Xj within
class k, for k = 1, . . . , K. The genes with the highest BSS/WSS-statistic
are selected. There is no well-established rule to choose the number of genes
to select, which is a major drawback of classification methods requiring gene
selection. In this study, we decide to use 20 or 50 genes for data sets with a
binary response and 100 and 200 genes for data sets with a multicategorical
response. The results obtained using other numbers of genes turn out to be
similar or worse. Moreover, these numbers are in agreement with similar studies
found in the literature (Dudoit et al., 2002).

At last, we apply a recent method called ’prediction analysis of microar-
ray’(PAM) which was especially designed for high-dimensional microarray data
(Tibshirani et al., 2002). To our knowledge, it is the only fast classification
method beside PLS which can be applied to high-dimensional data without
gene selection. PAM is based on shrunken centroids. The user has to choose
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the shrinkage parameter ∆. The number of genes used to compute the shrunken
centroids depends on ∆. A possible choice is ∆ = 0: all genes are used to
compute the centroids. Tibshirani et al. (2002) propose to select the best value
of ∆ by cross-validation: the classification accuracy is evaluated by leave-one-
out cross-validation for a set of 30 values of ∆. The value of ∆ minimizing
the number of misclassifications is chosen. In our study, we try successively
both approaches: ∆ = 0 (denoted as PAM) and ∆ = ∆opt (denoted as PAM-
opt), where ∆opt is determined by leave-one-out cross-validation as described
in Tibshirani et al. (2002). The PAM method as well the choice of ∆ by cross-
validation are implemented in the R library pamr (Tibshirani et al., 2002).

The table of results contains only the error rates obtained with 5NN, SVM,
PAM and PAM-opt, because the classification accuracy with LDA was found to
be comparatively bad for all data sets. The number of selected genes is specified
for each method: for example, ’SVM-20’ stands for Support Vector Machines
with 20 selected genes.

The classification results obtained with δPLS , 5NN, SVM and PAM are pre-
sented in the next section, where as the results obtained with boosting are dis-
cussed in Section 4.3.

4.2 Classification accuracy of δPLS

The classification results using the PLS-based approach δPLS are summarized in
Table 1. The data sets with a binary response can be divided in two groups. For
the leukemia and carcinoma data, the classification accuracy does not depend
highly on the number of PLS components. It seems that subsequent components
are only noise. On the contrary, the error rate is considerably reduced by using
more than one component for the colon, prostate and breast cancer data. The
improvement is rather dramatic for the prostate data. Thus, it seems that for
data sets with low error rates (leukemia, carcinoma), the classes are optimally
separated by one component, whereas subsequent components are useful for
data sets with high error rates (prostate, colon, breast cancer).

PLS dimension reduction is very fast because it is based on linear operations
with small matrices. The proposed procedure is much faster than the standard
approach consisting of selecting a gene subset and building a classifier on this
subset. For the lymphoma data and the SRBCT data, K − 1 seems to be the
minimum number of PLS components required to obtain a good classification
accuracy. It is noticeable that δPLS can also perform very well on data sets with
many classes (K = 8 for the NCI data).

As can be seen from Table 1, the number of components giving the best
classification accuracy is not the same for all data sets. When our procedure
to determine the number of useful PLS components is used for each partition
(L, T ), the classification accuracy turns out to be quite good. In Figure 4, his-
tograms of mopt over the 200 random partitions are represented for each data
set. These histograms agree with Table 1. For instance, the most frequent value
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Colon 1 2 3 4 5 mopt

(K = 2) 0.136 0.114 0.119 0.143 0.147 0.124
Leukemia 1 2 3 4 5 mopt

(K = 2) 0.020 0.028 0.03 0.030 0.028 0.024
Prostate 1 2 3 4 5 mopt

(K = 2) 0.366 0.140 0.076 0.081 0.077 0.078
Breast cancer 1 2 3 4 5 mopt

(K = 2) 0.14 0.110 0.104 0.106 0.103 0.110
Carcinoma 1 2 3 4 5 mopt

(K = 2) 0.025 0.021 0.022 0.024 0.023 0.024

Lymphoma 1 2 3 4 5 6 mopt

(K = 3) 0.037 0.0003 0.002 0.001 0.004 0.003 0.004
SRBCT 1 2 3 4 6 10 mopt

(K = 4) 0.343 0.200 0.056 0.027 0.009 0.003 0.003
BRCA 1 2 3 4 5 6 mopt

(K = 3) 0.468 0.348 0.310 0.268 0.285 0.303 0.0304
NCI 1 5 10 15 20 mopt

(K = 8) 0.715 0.338 0.293 0.318 0.325 0.329

Table 1: Mean error rate over 200 random partitions with PLS

Colon 5NN-20 5NN-50 SV M − 20 SV M − 50 PAM PAM-opt
(K = 2) 0.182 0.19 0.134 0.139 0.143 0.130
Leukemia 5NN-20 5NN-50 SV M − 20 SV M − 50 PAM PAM-opt
(K = 2) 0.034 0.039 0.038 0.05 0.022 0.046
Prostate 5NN-20 5NN-50 SV M − 20 SV M − 50 PAM PAM-opt
(K = 2) 0.119 0.124 0.086 0.085 0.370 0.099
Breast cancer 5NN-20 5NN-50 SV M − 20 SV M − 50 PAM PAM-opt
(K = 2) 0.117 0.123 0.100 0.093 0.120 0.147
Carcinoma 5NN-20 5NN-50 SV M − 20 SV M − 50 PAM PAM-opt
(K = 2) 0.020 0.021 0.024 0.029 0.036 0.096

Lymphoma 5NN-100 5NN-200 SV M − 100 SV M − 200 PAM PAM-opt
(K = 3) 0.014 0.003 0.038 0.019 0.013 0.042
SRBCT 5NN-100 5NN-200 SV M − 100 SV M − 200 PAM PAM-opt
(K = 4) 0.012 0.0052 0.010 0.014 0.046 0.069
BRCA 5NN-100 5NN-200 SV M − 100 SV M − 200 PAM PAM-opt
(K = 3) 0.378 0.318 0.588 0.581 0.331 0.396
NCI 5NN-100 5NN-200 SV M − 100 SV M − 200 PAM PAM-opt
(K = 8) 0.394 0.366 0.466 0.452 0.316 0.296

Table 2: Mean error rate over 200 random partitions with classical methods
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of mopt for the colon data is 2. It can be seen in Table 1 that the best classifica-
tion accuracy is obtained with 2 PLS components for the colon data.

Some of the classical methods tested in this paper also perform well, espe-
cially SVM and PAM. SVM performs slightly better than PAM for most data
sets. However, a pitfall of SVM is that it necessitates gene selection in prac-
tice, although not in theory. On the whole, the PLS-based method presented
in this paper performs at least as good as the other methods for most data sets.
More specifically, PLS performs better than the other methods for the colon,
the prostate data, the SRBCT and the BRCA data. It is (approximately) as good
as PAM and better than SVM and 5NN for the leukemia data, as good as SVM
and better than PAM and 5NN for the breast cancer data, as good as 5NN and
better than PAM and 5NN for the carcinoma data and the lymphoma data, and a
bit worse than PAM-opt but much better than 5NN and PAM for the NCI data.
Each of the three tested methods (5NN,SVM,PAM) performs much worse than
PLS for at least two data sets. PLS is the only method which ranges among the
two best methods for all data sets. This accuracy is not reached at the expense of
computational time, except if one performs many cross-validation runs for the
choice of the number of components. The problem of the choice of the num-
ber of components is one of the major drawbacks of the PLS approach. This
problem is partly solved by the procedure based on cross-validation, but this
procedure is computationally intensive and not optimal. Another inconvenient
of the PLS approach which is often mentioned in the statistical literature is that
it is based on an algorithm rather than on a theoretical probabilistic model, like
LDA or PAM. However, PLS is a fast and efficient method which never fails
to give a good to excellent classification accuracy for all the studied data sets.
Since the best number of components can be estimated by cross-validation, the
method does not involve any ’free’ parameter like the number of selected genes
for SV M or 5NN.

Boosting does not improve the classification obtained with δPLS in most
cases. However, the results are interesting because they indicate a qualitative
similarity between boosting and PLS. This topic is discussed in the next section.

4.3 Classification accuracy of discrete AdaBoost with δ =
δPLS

4.3.1 Real Data

In this section, we compute the mean classification error rate over 50 random
partitions using the AdaBoost algorithm with δ = δPLS and B = 30. B = 30
turns out to be a sensible choice for all data sets, because the classification accu-
racy remains constant after approximately 20 iterations. The results are repre-
sented in Figure 5 (top) for the prostate data. Boosting can reduce the error rate
when one or two PLS components are used. However, the classification accu-
racy of δPLS with three PLS components is not improved by boosting. It can be
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Figure 4: Histogram of the estimated optimal number of components for differ-
ent data sets.
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B = 1 B = 2 B = 3 B = 4 B = 5
PLS 1 0.80 −0.74 0.79 −0.74 0.60
PLS 2 −0.48 0.63 −0.35 0.58 −0.30
PLS 3 0.03 0.00 −0.00 0.00 0.14
PLS 4 −0.06 −0.01 −0.03 −0.02 −0.19

Table 3: Correlations between 4 PLS components and the 5 first PLS compo-
nents with boosting (prostate data)

seen from Table 1 that the best classification accuracy for δPLS is reached with
three PLS components: the fourth and fifth PLS components do not improve
the classification accuracy. Thus, with a fixed number m of PLS components,
boosting improves the classification accuracy if and only the (m + 1)th PLS
component also does.

In order to examine the connection between boosting and PLS, we perform
PLS dimension reduction on the whole prostate data set. We also run the Ad-
aBoost algorithm with δ = δPLS (with 1 component) and compute the empirical
correlations between the four first PLS components and the first component ob-
tained at each boosting iteration. The results are shown for 5 boosting iterations
in Table 3. The first component at each boosting iteration is strongly correlated
with the first and the second PLS component, but not with the subsequent com-
ponents. This statement agrees with the classification accuracy results: it can be
seen from Figure 5 (top) that the classification accuracy obtained by boosting
with one component equals approximately the classification accuracy of δPLS

with two components.
Thus, both the classification results and the study of the correlations suggest

a similarity between the PLS components obtained in subsequent boosting iter-
ations and the subsequent PLS components obtained when δPLS is used with-
out boosting. The same can be observed with the multicategorical responses.
Here we focus on the SRBCT data, but the study of other data sets yields sim-
ilar results. The mean error rate of δPLS with boosting is depicted in Figure 5
(bottom) for different numbers of PLS components. As for the prostate data,
boosting reduces the error rate when one or two PLS components are used, but
not when three PLS components are used. As can be seen from Table 1, three is
the minimal number of components required to obtain good classification accu-
racy. Thus, with a fixed number m of PLS components, boosting improves the
classification accuracy if and only the (m + 1)th PLS component also does.

The similarity between PLS and boosting can be intuitively and qualitatively
explained as follows. In this paragraph, ’boosting’ stands for ’boosting of δPLS

with one component’. At iteration k in boosting, an observation is either in or
out of the learning set, and the probability depends on how the observation was
classified at iteration k − 1. The observations which are misclassified at itera-
tion k − 1 have higher probability to be selected in the learning set at iteration
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k. At each iteration, the error rate in the learning set is expected to decrease,
since the algorithm focuses on ’problematic’ observations. In practice, the PLS
components computed at subsequent iterations have low correlations with the
PLS component computed at the first iteration. The PLS component computed
at the first iteration has high covariance with the class in the whole learning
set, whereas the PLS components computed at subsequent iterations have high
covariance with the class in particular learning sets where observations which
are uncorrectly predicted by the first PLS component are over-representated.

Let us consider δPLS without boosting, but with several PLS components.
For the computation of each PLS component, all the observations remain in the
learning set, but the mth PLS component is uncorrelated with the m − 1 first
PLS components. Thus, observations which are correctly predicted by the m−1
first PLS components do not participate as much in the construction of the mth
PLS component as the observations which are uncorrectly predicted. In con-
clusion, both algorithms (boosting and PLS with several components) focus on
observations or directions which have been neglected in the previous runs (for
boosting) or components (for PLS). The theoretical connection between boost-
ing and PLS could be examined in future work in a probabilistic framework.

4.3.2 Simulated Data

In simulations, we examine the effect of boosting on the classification accuracy
for multicategorical data. For the generation of simulated data, the number of
classes K is set successively to K = 3 and K = 4 and the number of obser-
vations in each class is set to 30 for the learning sets. The test sets contain 100
observations for each class, in order to improve the accuracy of the estimation
of the error rate. To limit the computation time, the number of predictor vari-
ables p is set to p = 200. Similar results can be obtained with different values
of n and p. Each class k is separated from the other classes by a group of 10
genes. The K groups of relevant genes are distinct, which is a simplifying but
realistic hypothesis. For each class k, the 10 relevant genes are assumed to have
the following conditional distributions:

X|Y = k ∼ N (µ = 0, σ = 1)
X|Y �= k ∼ N (µ = 1, σ = 1),

where N (µ, σ) denotes the normal distribution with mean µ and standard devi-
ation σ.

For K = 3 and K = 4 successively, we generate 50 learning data sets
{L1, . . . ,L50} and 50 test data sets {T1, . . . , T50} as follows. First, the K groups
of 10 relevant genes are drawn within each class from the conditional distribu-
tions given above. The remaining genes are drawn from the standard normal
distribution for all classes. For each pair {Lk, Tk} (k = 1, . . . , 50), δPLS with
boosting (B = 30) for 1,2,3 components is used to predict the classes of the
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Figure 5: Mean error rate over 50 random partitions with AdaBoost and δPLS

with different numbers of PLS components for the prostate data (top) and the
SRBCT data (bottom)
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1 2 3
K=3 0.328 0.077 0.113
K=4 0.504 0.283 0.104

Table 4: Mean error rate over 50 simulated learning sets and test sets with δPLS

for different numbers of PLS components.

observations from Tk. The mean error rate over the 50 runs is then computed at
each boosting iteration.

The results are depicted in Figure 6 for K = 3 (top) and K = 4 (bottom).
As can be seen from Figure 6, boosting improves the classification accuracy of
δPLS if and only if less than K − 1 components are used. It seems that using
boosting with a larger number of components can even decrease the classifi-
cation accuracy. For comparison, the classification accuracy of δPLS without
boosting is given in Table 4 for different numbers of PLS components. The best
classification accuracy is achieved with K−1 PLS components for both K = 3
and K = 4. Thus, the similarity between boosting and PLS which is observed
for real data can also be observed for simulated data: for a given number m of
PLS components, boosting improves the classification accuracy if and only if
the (m + 1)th PLS component also does.

In the following section, we show a connection between the first PLS com-
ponent and gene selection: the squared coefficient in the first PLS component
can be seen as a score of relevance for single genes (see section 4 for more de-
tails). ’Boosted gene selection’ might be an interesting application of boosting
with PLS: we suggest that selecting the top-ranking genes at each boosting it-
eration might improve the classification accuaracy of classifiers based on small
gene subsets, although the study of this topic would be beyond the scope of this
paper.

5 PLS and gene selection

Biologists often want statisticians to answer questions such as ’which genes
can be used for tumor diagnosis ?’. Thus, gene selection remains an important
issue and should not be neglected. Dimension reduction is sometimes wrongly
described as a black box which looses the information about single genes. In
the following, we will see that PLS is strongly connected to gene selection.

In this section, only binary responses are considered: Y can take values 1
and 2. We denote as YC = (YC1, . . . , YCn)T the vector obtained by centering
Y = (Y1, . . . , Yn)T to have zero mean:

YCi = −n2/n if Yi = 1,
= n1/n if Yi = 2,

where n1 and n2 are the numbers of observations in class 1 and 2, respectively.
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Figure 6: Mean error rate over 50 simulated learning sets and test sets with
AdaBoost and δPLS with different numbers of PLS components for simulated
data for K = 3 (left) and K = 4 (right)
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To perform PLS dimension reduction, it is not necessary to scale each col-
umn of the data matrix X to unit variance. However, the first PLS component
satisfies an interesting property with respect to gene selection if X is scaled. In
this section, the columns of the data matrix X are supposed to be have been
scaled to unit variance and, as usual in the PLS framework, centered to zero
mean. a = (a1, . . . , ap)

T denotes the p × 1 vector defining the first PLS com-
ponent as calculated by the SIMPLS algorithm.

A classical gene selection scheme consists of ordering the p genes according
to BSSj/WSSj and selecting the top-ranking genes. For data sets with a binary
response, we argue that a2

j can also be seen as a scoring criterion for gene j and
we prove that the ordering of the genes obtained using BSSj/WSSj is the same
as the ordering obtained using a2

j .

Theorem 1 If K = 2, there exists a strictly monotonic function f such that

BSSj/WSSj = f(a2
j),

for j = 1, . . . , p.

Proof. From the SIMPLS algorithm, we get

a = c1 · XTYC ,

where c1 is a scalar. For j = 1, . . . , p,

aj = c1 ·
n∑

i=1

xijYCi.

It leads to

aj = c1 · (−(n2/n)
∑

i:Yi=1 xij + (n1/n)
∑

i:Yi=2 xij)
a2

j = c2
1 · (n1n2/n)2(µ̂j2 − µ̂j1)

2

For K = 2,

BSSj = n1(µ̂j1 − µ̂j)
2 + n2(µ̂j2 − µ̂j)

2

= n1((nµ̂j1 − n1µ̂j1 − n2µ̂j2)/n)2 + n2((nµ̂j2 − n2µ̂j2 − n1µ̂j1)/n)2

= (n1n
2
2/n

2 + n2n
2
1/n

2)(µ̂j2 − µ̂j1)
2

= c2a
2
j ,

where c2 is a positive constant which does not depend on j. BSSj + WSSj is
proportional to the sample variance of Xj . Since the variables X1, . . . , Xp all
have equal sample variance, there exists a constant c3 which is independent of
j such that

BSSj/WSSj =
BSSj

c3−BSSj

=
c2a2

j

c3−c2a2
j
.

25Boulesteix: PLS Dimension Reduction for Classification with Microarray Data

Produced by The Berkeley Electronic Press, 2004



�

As a consequence, the first PLS component calculated by the SIMPLS al-
gorithm can be used to order and select genes and the ordering is the same as
the ordering produced by one of the most widely accepted selection criteria. As
an illustration, the BSS/WSS ratio can be computed for the 2000 genes of the
colon data set. For the 5 first genes, one obtains:

1.069 · 10−2, 3.979 · 10−5, 6.439 · 10−3, 2.431 · 10−3, 9.492 · 10−4.

The coefficients of these 5 genes for the first PLS component are

9.280 · 10−5, −5.691 · 10−6, 7.217 · 10−5, −4.444 · 10−5, 2.779 · 10−5.

As can be seen from these partial results, the ordering of the genes produced
by the BSS/WSS ratio is the same as the ordering produced by the absolute
value of the coefficient for the first PLS component. For the colon data, the 5
top-ranking genes are gene 493 (Hsa.37937), gene 377 (Hsa.36689), gene 249
(Hsa.8147), gene 1635 (Hsa.2097) and gene 1423 (Hsa.1832).

Up to a constant, the BSS/WSS-statistic equals the F -statistic which is
used to test the equality of the means within different groups. Since BSSj/WSSj

is obtained by a strictly monotonic transformation of a2
j , a2

j can be seen as a test
statistic itself. We prove that the SIMPLS algorithm can be used as a gene
selection procedure which is exactly equivalent to the procedure based on the
BSS/WSS ratio or on the F -statistic. This method tend to be sensitive to out-
liers, which are common in microarray data. Moreover, it does not incorporate
interactions and correlations between genes, as all univariate criteria. However,
it is one of the most widely used criteria for gene selection and seems to per-
form well in most cases (Dudoit et al., 2002). We claim that one should rather
use the first PLS component than the BSS/WSS ratio because it is faster to
compute.

6 Discussion

In this paper, several aspects of PLS dimension reduction for classification are
examined. First, PLS is compared to several other classification methods which
are known to give excellent classification accuracy. To our knowledge, this
work is the first extensive comparison study including PLS. The classifier δPLS

turns out to be the best one in terms of classification accuracy for most of the
data sets. Another advantage is its computational efficiency. Even if PLS di-
mension reduction is originally designed for continuous regression, it can be
successfully applied to classification problems. To determine the optimal num-
ber of PLS components, a simple cross-validation procedure is proposed. The
reliability of this procedure is quite good, although not perfect. An aggregation
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strategy (AdaBoost) was used in the hopes of improving the classification accu-
racy, because aggregation methods are known to be very effective in reducing
the error rate on independent test data. The conclusion is that boosting does not
improve the classification accuracy of PLS, except in some special cases. The
second topic of this paper is gene selection. We show that the first PLS com-
ponent can be used for gene selection and prove that the proposed procedure
is equivalent to a well-known gene selection procedure found in the literature.
Thus, the information on single genes does not get lost through PLS dimension
reduction. Moreover, we claim that PLS dimension reduction can be used as
a visualization tool. Contrary to principal component analysis, PLS is a super-
vised procedure which uses the information about the class of the observations
to construct the new components. Unlike sufficient dimension reduction and
related methods, PLS can handle all the genes simultaneously and performs
gene selection intrinsically. In a word, PLS is a very fast and competitive tool
for classification problems with high-dimensional microarray data as regards
to prediction accuracy, feature selection and visualization. In future work, one
could examine the theoretic connection between PLS and boosting, as well as
the use of boosting in gene selection. Since the best classification accuracy is
often reached with more than one PLS component, the subsequent PLS com-
ponents could also be used to perform a refined gene selection. One could also
try to improve the procedure to choose the number of components. It seems
that cross-validation is appropriate, but a more sophisticated cross-validation
scheme could maybe improve the classification performance of our PLS-based
approach.
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