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a b s t r a c t

Knowledge of transcription of the human genome might greatly enhance our understand-
ing of cancer. In particular, gene expression may be used to predict the survival of cancer
patients. Microarray data are characterized by their high-dimensionality: the number of
covariates (p ∼ 1000) greatly exceeds the number of samples (n ∼ 100), which is a con-
siderable challenge in the context of survival prediction. An inventory ofmethods that have
been used to model survival using gene expression is given. These methods are critically
reviewed and compared in a qualitative way. Next, these methods are applied to three
real-life data sets for a quantitative comparison. The choice of the evaluation measure of
predictive performance is crucial for the selection of the best method. Depending on the
evaluation measure, either the L2-penalized Cox regression or the random forest ensemble
method yields the best survival time prediction using the considered gene expression data
sets. Consensus on the best evaluation measure of predictive performance is needed.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Knowledge of the human genome and its expressionmight greatly enhance our understanding of cancer (Brown and Bot-
stein, 1999). In particular, the gene expression of tissue of cancer patients may be used to predict their survival time. A mi-
croarraymeasures the expression of thousands of genes simultaneously (which genes are expressed and towhat extent). The
reader is referred toNguyen et al. (2002) for an overviewof the biological and technical aspects of themicroarray technology.
In survival analysis one studies survival time, which is defined as the time length from the beginning of observation until

death (or some other event) of the observed patient or until the end of observation. The main goal is to predict the time
to event (commonly denoted as survival time even if the considered event is not death) using the expression of the genes
as explanatory variables. Because the event is not observed for all observations, standard regression techniques cannot
be applied: censoring has to be taken into account. The comparison presented here is limited to methods that use the
proportional hazard model (Cox, 1972) or tree-based ensemble methods (Hothorn et al., 2006) to link the survival time
to gene expression.
Traditionally, the Cox proportional hazard model is applied in a situation where the number of samples greatly exceeds

the number of covariates (n > p). When predicting survival with gene expression data, one runs into the problem of the
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high-dimensionality of microarray data: the number of genes (p ∼ 1000) exceeds by far the number of samples (n ∼ 100),
yielding the well-known ‘‘p � n’’ paradigm. In addition to high-dimensionality, gene expression data are often highly
correlated, which further increases the collinearity between explanatory variables.
Herewe give an inventory ofmethods that have been used to predict survival time using gene expression. Thesemethods

are first critically reviewed and compared in a qualitative way. They are then applied to three real-life cancer data sets for
a quantitative comparison. We find that the choice of the evaluation measure of predictive performance is crucial for the
selection of the best method. Depending on the evaluation measure, either the L2-penalized Cox regression or the random
forest ensemble method yields the best survival time prediction with the data sets considered in this study (see results
section). Consensus on the best evaluation measure of predictive performance is needed.
Manymethods have beenproposed in the emerging field of high-dimensional biological data analysis. Hence, the need for

insightful review articles and fair comparison studies is probably as stringent as the need for newmethodological develop-
ments (Boulesteix, 2006). Boulesteix et al. (2008) define a fair comparison study of statistical predictionmethods as follows.

• The title includes explicitly words such as ‘‘comparison’’ or ‘‘evaluation’’, but no specific method is mentioned in the title,
thus excluding articles whose main aim is to demonstrate the superiority of a particular (new) method.
• The article is written at a high statistical level. In particular, the methods are described precisely (including, e.g. the
chosen variant or the choice of parameters) and adequate statistical references are provided.
• The comparison is based on at least two data sets.
• The comparison is based on at least one of the following evaluation strategies: CV, MCCV, bootstrap methods (see
Section 3.2).

Even if the above rules are respected, different teams are expected to obtain different results, for instance because they
do not use the same evaluation design, the same implementation or the same parameter tuning procedure. Moreover,
optimistically biased results are likely to be obtained with the method(s) from the authors’ expertise area (Boulesteix et al.,
2008). For example, authors are aware of all available implementations of that method and will quite naturally choose the
best one, with the best parameter settings. Similarly, an inexperienced investigator might overestimate the error rate of
methods involving many tuning parameters by setting them to values that are known to the experts as suboptimal.
While the relative performance of class predictionmethods has been investigated in several high-quality neutral studies,

e.g. Dudoit et al. (2002) and Statnikov et al. (2005), there are to our knowledge very fewpublishedneutral comparison studies
of survival predictionmethods (Bovelstad et al., 2007; Schumacher et al., 2007). Corroboration of findings from independent
studies, which is crucial in medical research (Ioannidis, 2005) would strengthen these conclusions. Moreover, the present
article includes several important aspects whichwere not considered in previous studies.We use different implementations
of several other methods (SuperPC and PLS) and study additional approaches (bagging and random forest). Moreover, we
consider different evaluation measures to assess the predictive power of the methods (for instance, Bovelstad et al. (2007)
does not include the Brier score). The three comparison studies have one real-life data set in common, but we also analyze
two additional benchmark data sets.

Notation and the proportional hazard model

Let t = (t1, t2, . . . , tn) denote the times of observation of the n available patients and T the corresponding random
variable: ti is either the time until the death of the i-th patient or the time until the end of the observation (in which case
the observation is right-censored: death of the patient did not happen before censoring). The censoring variable δi indicates
whether the patient died at time ti (δi = 1), or the observation was censored (δi = 0). Further, D denotes the set of indices
of the events (i.e. such that δi = 1), and Rr , r ∈ D are the sets of indices of the individuals at risk at time tr − 0. Finally, let X
be the (n× p) gene expression matrix, where Xij is the expression level of gene j in sample i.
The proportional hazard model (Cox, 1972) models the hazard rather than the survival time. The hazard is defined as:

hT (t) = lim
r→0

ST (t)− ST (t + r)
rST (t)

= lim
r→0

P(t ≤ T ≤ t + r|T ≥ t)
r

,

where ST (t) = P(T > t) = 1 − P(T ≤ t) is the survival function describing the probability of surviving after time
point t . Then, hT (t) · ∆t can be interpreted as the probability of an event occurring at the next instance, given that the
patient has survived until t (Klein and Moeschberger, 2003). The survival function and the hazard are related through
ST (t) = exp (−HT (t)) = exp

(
−
∫ t
0 hT (u)du

)
, whereHT (t) is the cumulative hazard. The proportional hazardmodel is given

by H(t,X) = H0(t) exp (f (X;β)), where H0(t) is an unspecified baseline hazard function that is assumed to be the same
for all patients, β = (β1, . . . , βp)T is the parameter vector to be estimated and f is a function of the explanatory variables,
often f (X;β) = β1 X1 + · · · + βp Xp. The parameter vector β and the baseline H0(t) are estimated using partial likelihood
maximization and the Breslow-estimator, respectively. Given the estimated parameters and baseline hazard, the hazard and
survival for a new sample with expression profile X̃ are predicted by Ĥ0(ti, X̃) exp(X̃

T
β̂) and exp

(
−Ĥ0(ti, X̃) exp(X̃

T
β̂)
)
,

respectively.
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2. The inventory

Herewe present an inventory ofmethods that have been proposed to predict survival using high dimensionalmicroarray
data. The articles presented in this section were found using search engines www.pubmed.gov and scholar.google.com.
References in the articles found were also checked. Nevertheless, we do not claim our search has been exhaustive. In a
comparison study, we focus onmethods which have hadwide impact: comparing all themethods proposed in the literature
in a single study with the same amount of precision would be an impossible task. The methods are described at a high level
only: the reader is referred to the original article for a more detailed description. Some methods have been proposed by
several authors with only minor differences. We have chosen to describe only one of them and point out the differences
with the others.

2.1. Clusters as predictors

Alizadeh et al. (2000) and many others thereafter first group the samples by means of (hierarchical) clustering and
use this grouping as a prognostic factor in the Cox proportional hazard model. They cluster the samples by means of the
gene expression profiles. The resulting clustering labeling is then considered as a summary of the predictive information
contained in the expression data, and is used in survival analysis.
Formally, this is not a prediction method, but could be used as such by assigning each new sample to one of the found

clusters. The estimated Kaplan–Meier curve for this cluster yields the predicted survival time of the new sample. The relation
between the survival time and the original explanatory variables, however, is obscured by an intricate link between gene
expression and the cluster label. Moreover, it is unclear whether this unsupervised procedure makes efficient use of the
available predictive information of gene expression, and the choice of the number of clusters and of the clustering algorithm
may be problematic. Further, it is nowwell-established that summarizing continuous variables as categories (or clusters) is
often a bad idea (Royston et al., 2006). We therefore do not include this method in our comparison.

2.2. Supervised harvesting of expression trees

Hastie et al. (2001) use the (summarized) expression of groups of genes as a predictor for survival. These groups are
found by (hierarchical) clustering of genes. The expression of genes in a cluster is summarized, e.g. by taking the sample-
wise average. The averaged expressions are then used to predict survival.
The method starts by clustering p genes hierarchically, resulting in p+ p− 1 = 2p− 1 clusters. Next, the corresponding

average expression profile is calculated for every cluster giving 2p−1 new predictors. Using the 2p−1 resulting predictors,
one builds a proportional hazard model also including first-order interactions (Hastie et al., 2001). The authors suggest
that higher order interactions could be included in the model, but for computational reasons limit themselves to pairwise
interactions. Hastie et al. (2001) decide on the clusters to be used bymeans of a forward stepwise/backward deletionmethod,
where the final model is chosen by K -fold cross-validation.
The supervised harvesting method has been heavily criticized. Hastie et al. (2001) themselves suggest that the method

might need a large number of samples to successfully discover interactions. Two other drawbacks are pointed out by Segal
et al. (2003): (1) the model is very sensitive to the clustering method applied in the first step, and (2) gene harvesting may
include heterogenous clusters whose average expression correlates with the outcome, despite that the individual genes
in the cluster exhibits little association. We thus do not take the supervised harvesting of expression trees along in the
comparison.

2.3. Univariate gene selection

Themost straightforward and intuitive approach to handle high-dimensional data consists of carrying out univariate gene
selection andusing the obtained (small) subset of genes as covariates in a standardCoxmodel. Such an approachwas adopted
by, e.g., Jenssen et al. (2002). We include univariate gene selection in our comparison study as a baseline reference method.
In contrast to Jenssen et al. (2002), we do not group the expression of each gene into three categories (low, median, high)
but rather consider gene expression as a metric variable. Consequently, we order genes based on the p-value obtained using
Wald’s test in univariate Cox regression rather than the logrank test. Contrary to Jenssen et al. (2002), we select a pre-fixed
number of genes (p̃ = 10 in thepresent study) rather than geneswhosep-values fall belowa threshold. Thiswarrants thatwe
will have a set of genes of convenient size for any training set. Furthermore, the univariate Cox regressionmodel is estimated
based on the training data only, which is a universally recommended approach (Boulesteix, 2007; Statnikov et al., 2005).
Univariate feature selection does not account for the correlation between genes. Consequently, many highly correlated

genes may be selected. This is indeed observed. As a consequence of high correlation, many genes which are univariately
significant have insignificant p-values in the multivariate proportional hazard model.
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2.4. Supervised principal component analysis

Bair and Tibshirani (2004) and Bair et al. (2006) propose supervised principal component analysis (SuperPC) to predict
survival using gene expression data. SuperPC is a modification of the conventional principal components analysis (PCA). It
handles the problem of high-dimensionality by using not all genes, but only those with the strongest estimated correlation
with the survival time for the principal component analysis. These components are then used in the proportional hazard
model.
SuperPC first calculates the (absolute) Cox score statistic as a measure of the univariate association between each

gene and the survival time. A threshold for the Cox scores is then chosen by cross-validation. A reduced expression
matrix consisting of only those genes whose Cox score statistic exceeds the threshold is formed. Predictors for survival
are constructed by means of singular value decomposition from the reduced expression matrix. The resulting principal
component(s) is (are) used in the proportional hazard model to predict the survival.
The original papers on SuperPC do not suggest any method for selecting the number of principal components to be

used in survival prediction. The examples in Bair and Tibshirani (2004) and Bair et al. (2006) use only one or two principal
component(s).
The principal components are a weighted average of the original expression profiles, which can be interpreted as

‘eigengenes’, ‘supergenes’ or ‘meta-genes’ (Alter et al., 2000). This interpretation is however a label without content, because
it is neither linked to a biological entity nor to a theoretical construct. The interpretation of components is generally not
straightforward, especially if the number of genes contributing to the component is large. Regardless of their interpretation
principal components may be excellent survival time predictors. Furthermore, as a dimension reduction method, the
SuperPC approach allows simple low-dimensional visualization. The implementation of SuperPC available from the R
package superpc is used in the remainder with one or two component(s) following Bair and Tibshirani (2004) and Bair
et al. (2006).

2.5. Partial Cox regression

Nguyen and Rocke (2002) propose to use the partial least squares (PLS) algorithm for the prediction of survival timewith
microarray data. Their procedure, however, does not handle the censoring aspect of the survival data properly. Extensions
of the PLS algorithm that can handle censored data are suggested by Nguyen and other researchers (Bastien, 2004; Bastien
et al., 2005; Li and Gui, 2004; Nguyen, 2005; Park et al., 2002). See Boulesteix and Strimmer (2007) for a review of these
methods. In the present article, we focus on the method by Bastien (2004) and Bastien et al. (2005), because its statistical
properties are well-documented (Bastien et al., 2005) and the algorithm does not involve any critical iterative optimization
step, in contrast to Park et al. (2002).
In a nutshell, PLS is a supervised dimension reduction technique which can be used to relate a response variable to the

explanatory variables X, see Martens (2001) for an historical overview of the development of the different PLS variants
and Boulesteix and Strimmer (2007) for an overview of recent applications to genomic data. When applied to regression
problems without censoring, the method constructs the new components as mutually orthogonal linear combinations of
the covariates having maximal covariance with the response. PLS differs from PCA in that the constructed components have
maximal covariance with the response instead of maximal variance. In contrast to PCA, PLS is thus a supervised dimension
reductionmethod. The loadings of the explanatory variables on the components are non-linear functions of the explanatory
variables and the response. They are found by a computationally efficient iterative algorithm.
Bastien et al. (2005) modifies the standard PLS method by replacing the linear regression step by Cox regression for

derivation of the PLS coefficients. The first PLS component is a weighted sum of the centered expression values. In Bastien’s
method, theseweights equal the regression coefficients of the univariate proportional hazardmodel up to a scaling constant.
Next, the expression values are regressed against the formed component. The residuals are used for construction of the
next component, which is also a weighted sum with weights chosen in a similar fashion. The process is continued until K
components are constructed. K could be determined by cross-validation.
PLS has been criticized for having undesirable shrinkage properties (Butler and Denham, 2000). See Krämer (2007) for

a discussion. It is however unclear whether this criticism applies to the generalized PLS method under study. As with the
SuperPC method the resulting components may be hard to interpret. Nonetheless, they still may be excellent survival time
predictors. Further, as a dimension reduction method, PLS approaches allows simple low-dimensional visualization. In the
present paper, we focus on the method by Bastien et al. (2005) which we have re-implemented in R. The number of PLS
components is fixed to one or two, like for the SuperPC method.

2.6. L2-penalized Cox regression

Pawitan et al. (2004), Hastie and Tibshirani (2004) and Van Houwelingen et al. (2006) all propose to use the Cox-model
with a quadratic penalty (ridge regression) in order to predict survival time based on gene expression data. However, this
particular penalized approach is computationally too intensive for the p � n situation. The penalized Cox regression
is thus combined with a dimension reduction technique for reducing the number of computational operations. All three
aforementioned methods use cross-validation to find the optimal penalty parameter.
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All methods replace the expression matrix by the (n× n)matrix of principal components. This reduces the dimension of
the covariate space from p to n dimensions. It is motivated by a theorem stating that we can replace the p covariates by the
n principal components, use the latter in the penalized regression problem, and obtain the solution of the original problem
by retracing the singular value decomposition (Hastie and Tibshirani, 2004).
Van Houwelingen et al. (2006) initiate their estimation algorithm by estimating the baseline hazard (using β = 0). Next,

they estimateβ bymaximizing the penalized total likelihood,whereas Pawitan et al. (2004) andHastie and Tibshirani (2004)
maximize the partial log-likelihood. The resulting estimates of β are used to update the estimate of the baseline hazard.
The latter two steps are alternated until convergence. The optimal value for λ is chosen by leave-one-out cross-validation
using the cross-validated partial log-likelihood (Verweij and VanHouwelingen, 1993). Pawitan et al. (2004) use the adjusted
profile-likelihood for cross-validation, and Hastie and Tibshirani (2004) propose the score statistic for cross-validation.
As with the SuperPCmethod the resulting components may be hard to interpret. Nonetheless, they still may be excellent

survival time predictors. Further, the components allow simple low-dimensional visualization. By retracing the singular
value decomposition, one could also obtain the estimates for the individual genes. A drawback of this approach is that all
coefficients are allowed to be non-zero, thus yielding complex models. In the present study, we use an R implementation of
the method of Van Houwelingen et al. (2006) which was provided by Jelle Goeman.

2.7. L1-penalized Cox regression

As opposed to VanHouwelingen et al. (2006), Park andHastie (2006) (but also Gui and Li (2005) and Segal (2006)) use the
Cox model with an L1-penalty. The L1-penalty has the advantage (over the L2-penalty) of shrinking some of the coefficients
to zero. Hence, it has an in-built feature selection procedure. The use of an L1-penalized Coxmodel is proposed by Tibshirani
(1997). His algorithm to fit the model is inefficient for the situation under study (p� N , with p ≈ 10 000). Park and Hastie
(2006) propose a computationally efficient algorithm to fit the Cox model with an L1-penalty. As opposed to Gui and Li
(2005) and Segal (2006), they use a penalty given as a linear combination of the L1-and L2-norm, which stabilizes the fitting
procedure in the presence of strong correlations between covariates. It also leads to grouping of highly correlated features
(Zou and Hastie, 2005).
Park and Hastie (2006) formulate the estimation equation for β as:

β̂(λ) = argminβ − ln L(t,X, δ,β)+ λ‖β‖1,

where λ > 0 is the regularization parameter and ‖.‖1 stands for the L1 norm. They introduce an algorithm that determines
the entire path of the coefficient estimates as λ varies, i.e. that finds {̂β(λ) : 0 < λ < ∞}. The algorithm starts with
calculating β̂(∞), which results in setting β equal to zero. Then it computes a series of solution sets {λi,β(λi)}, each
time estimating the coefficients with a smaller λ based on the previous estimate. Hence, with each step the penalty is
lowered, encouraging more coefficients to become non-zero. The estimates of β and the step size of λ between iterations
are determined by the previous estimates. The iteration stops if the set of non-zero coefficients is not augmented anymore.
The optimal λ is chosen by cross-validation or by minimization of the Bayesian information criterion.
The in-built feature selection preserves the original interpretation of the genes. However, we observe that the added L2-

penalty does not prevent highly correlated features to be included, as claimed in Zou and Hastie (2005). The set of features
may thus contain some redundancy, which does not necessarily affect the predictive power of the method. Further, the
computation time of themethod is among the highest of themethods in the comparison. In this study, we use the R package
glmpath.

2.8. Tree-based ensemble methods

The considered ensemble methods offer the possibility to include hundreds or thousands of covariates. However, it is
recommended to carry out preliminary variable selection instead of including all covariates in order to reduce computation
time. In this article, we set the number of covariates to p̃ = 200. In our experience, larger numbers of covariates yield similar
results. Variable selection is always performed using the training data set only, as commonly recommended in the context
of prediction using high-dimensional data (Boulesteix, 2007). Performing variable selection using both the training and test
data sets would indeed lead to an underestimation of the prediction error.
The term ‘‘bagging’’ is the abbreviation of bootstrap aggregating and was first introduced by Breiman (1996). The basic

idea of bagging is to aggregate a large number of estimators in order to improve the prediction compared to one single
estimator. Bagging of survival trees is investigated by Hothorn et al. (2004, 2006).
A tree is built by successively splitting into two groups (nodes). If Xj denotes the splitting covariate, one node contains all

observations with Xj ≤ c , while the other node contains all observations with Xj > c. The covariate Xj and the threshold c
are selected based on a splitting criterion. Nodes which are no longer split (according to the so-called ‘‘stopping criterion’’)
are denoted as leaves. For details see Breiman et al. (1984), Keles and Segal (2002) and Segal (1998). Conditional inference
trees (Hothorn et al., 2006) are an important class of decision trees based on statistical tests and include survival trees as a
special case. In this article, we focus on such trees which are reported to be less biased than previous approaches (Hothorn
et al., 2006). In survival trees, prediction is performed as follows. For each leaf, the Kaplan–Meier estimation of the survival
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function is carried out based on the training observations forming this leaf. A new observation is dropped down the tree and
predicted by the Kaplan–Meier curve of the leaf it falls into.
Bagging of survival trees is carried out as follows. A total of B bootstrap samples of size n are drawn from the training

sample. A survival tree is generated for each of the B bootstrap samples. Prediction is performed by dropping the new
observation down the B trees successively. The observations from the B leaves in which the new observation falls are
combined into one single (large) sample, from which the predicted Kaplan–Meier curve is estimated.
Random Forests is another ensemble method used for survival analysis by Hothorn et al. (2006). This method is based

on the same principle and aggregation scheme as bagging. However, the trees are built in a different way. Not all covariates
are used to generate a tree. Instead, only a subset of randomly selected covariates are considered as candidate covariates
at each splitting, while the others are ignored. The number of selected covariates is a parameter of the method. Note that
random forests are equivalent to bagging if the number of selected covariates is set equal to the total number of covariates.
The non-parametric tree-based ensemblemethods are not based on a particular stochasticmodel and can thus be applied

in a wide range of situations. An inconvenience is that they involve many tuning parameters such as the number of trees,
the number of candidate covariates at each split or the stopping criterion. However, our experience is that (i) the results do
not depend much on the parameters, (ii) the default settings of the package party do not need to be changed. A further
inconvenience of ensemblemethods is the random component induced by bootstrap sampling: two forests grown using the
same training data usually yield slightly different results. Variability can only be decreased at the price of computing time,
by increasing the number of trees. Finally, ensemble methods share the pitfall of many machine learning approaches: in
contrast to single trees, the output of ensembles is hard to interpret for non-experts.
In the current study, we use the implementations of bagging and random forests available from the R package party

(Hothorn et al., 2006) with the default parameter values.

2.9. Other methods

To keep the scope of the study manageable, we only include a limited number of methods in the comparison. Some
arbitrariness is unavoidable, but we feel that the current selection covers the spectrum of methods reasonably well.
Many other, but less widely used methods linking survival times and gene expression have been proposed (Li and Li,

2004; Li and Luan, 2004; Liu et al., 2004; Kaderali et al., 2006; Ma, 2007; Tadesse et al., 2005; Xu et al., 2005). The more
complex problem of survival analysis based on longitudinal data is addressed by Rajicic et al. (2006). A related approach is
the globaltest method by Goeman et al. (2005), which tests whether a group of genes is associated with the outcome
variable, for instance, survival. This approach is not a predictionmethod, but, as pointed out inVanHouwelingen et al. (2006),
it may be used as a preliminary step before prediction to assess whether the expression data have predictive potential.

3. Results: Comparison of methods

Here we compare the methods described above qualitatively and quantitatively. In the qualitative comparison we use
high-level characteristics to group anddiscriminate themethods on the basis of how they produce predictors in the ‘‘p� n’’-
paradigm. The quantitative comparison consists of an assessment of predictive performance in real-life data sets.

3.1. Qualitative comparison

All methods handle the problem of high-dimensionality by some form of dimension reduction in order to use the
expression data to predict survival. The aim of dimension reduction is to find a set of p̃ new features based on the input set of
p features improving prediction accuracy or decreasing the number of features without significantly decreasing prediction
accuracy of the predictor built using only the new features.
Two strategies of dimension reduction can be distinguished: feature selection and feature extraction. Feature selection

consists of selecting the best possible subset of the input feature set. This preserves the interpretability of the original data.
Feature extraction consists of finding a transformation to a lower dimensional space. The new features are then a linear or
non-linear transformation of the original features. Thismay improve the prediction ability, butmay not have a clear physical
meaning. Note that feature selection is in fact a special case of feature extraction.
Dimension reduction strategies are further characterized by univariate versus multivariate approaches and supervised

versus unsupervised approaches. Univariate approaches for dimension reduction consider each individual gene separately
from the other, whereas multivariate approaches take into account the covariance or/and interactions between genes.
Supervised approaches for dimension reduction take into account the response (survival) information of the samples within
the training set. Unsupervised approachesmake no use of survival data in the dimension reduction.
The characteristics of the methods considered in this article are summarized in Table 1. This is done to facilitate a

comparison of the methods on a conceptual level, but also to interpret performance differences on the real-life data later.
Supervised principal component analysis (Bair and Tibshirani, 2004) is an element of every group, because it contains
two dimension reduction steps. First a univariate supervised feature selection is done, followed by a feature extraction,
when the principal components are constructed multivariately and unsupervisedly. Bagging and random forests are used
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Table 1
Dimension reduction strategies of the compared methods

Method Feature selection/extraction Uni/multi-variate approach Supervised approach

Univariate gene selection sel uni y
Supervised PCA ext/sel uni/multi y/n
Partial Cox regression ext multi y
L1-penalized Cox regression sel multi y
L2-penalized Cox regression ext multi y
Bagging ext uni/multi y
Random forests ext/sel uni/multi y

in combination with preliminary univariate gene selection, but tree construction is essentially multivariate, since it takes
interactions into account. Hence, these methods can be seen as a combination of feature selection and extraction.
From Table 1 it is obvious that all methods are (at least partially) supervised approaches, and perform dimension

reduction mostly multivariately. Within those characteristics it is the feature selection/extraction that sets the methods
apart.

3.2. Predictor evaluation for the quantitative comparison

The true evaluation of a predictor’s performance is to be done on independent data. In the absence of independent data
(the situation considered here) the predictive accuracy can be estimated as follows (Dupuy and Simon, 2007). The samples
are split into mutually exclusive training and test sets. The gene expression and survival data of the samples in the training
set are used to build the predictor. No data from the test set are used in predictor construction (including variable selection)
by any of the methods compared. This predictor is considered to be representative of the predictor built on all samples (of
which the training set is a subset). The test set is used to evaluate the performance of the predictor built from the training
set: for each sample in the test set, survival is predicted from gene expression data. The predicted survival is then compared
to the observed survival and summarized into an evaluationmeasure (discussed below). To avoid dependency on the choice
of training and test set, this procedure is repeated for multiple splits. The average of the evaluation measures resulting from
each split is our estimate of the performance of the predictor built using the data from all samples.
We now discuss evaluation measures of predictive performance. It is not straightforward to evaluate and compare

prediction methods in the presence of censoring. The standard mean-squared-error or misclassification rate criteria used
in regression or classification cannot be applied to censored survival times. In this section we describe the three measures
(p-value, R2 and Brier score) used in the present comparison study to evaluate the prediction of the methods compared. The
first two measures are based on the Cox model, while the third measure (Brier score) uses the predicted survival curves,
which can also be derived via other approaches such as tree-based procedures. For applying the two Cox-basedmeasures to
tree-based prediction methods (bagging and random forests), we simply extract the predicted median survival time from
the predicted survival curves and use it as a predictor in a univariate Coxmodel. This approach, though possibly suboptimal,
allows to compare all the prediction methods with all evaluation measures.
Here we elaborate on the three evaluation measures, as each is a different operationalization of predictive performance.

• p-value (likelihood ratio test): To assesswhether the built predictor has significant predictive power, we use the likelihood
ratio test (Lehmann, 1986). This is a well-known statistical test used to make a decision between two models, (here) a
null model having no predictive power and the built predictor. More formally, the test evaluates the null hypothesis
H0 : β = 0, i.e. the gene expression predictor has no effect on survival. The null hypothesis is evaluated using the
likelihood ratio test statistic LLR(̂β) = −2 (l(0)− l(̂β)), with l(.) denoting the value of the log-likelihood function. Under
the null hypothesis this test statistic has aχ2 distribution, which is used to calculate the p-value. The p-value summarizes
the evidence againstH0: the lower the p-value themore probable thatH0 is not true. In otherwords, the lower the p-value,
the more evidence that the built predictor is a good predictor of survival. Note that this p-value is derived from the test
data set: the data that were used to construct the predictor are not used for its evaluation. The p-value of the likelihood
ratio test has been used as an evaluation measure for predictive performance of gene expression based predictors of
survival by many others (Bair and Tibshirani, 2004; Bovelstad et al., 2007; Park et al., 2002; Segal, 2006).
• R2 criterion: To quantify the proportion of variability in survival data of the test set that can be explained by the predictor,
we use the coefficient of determination (henceforth called R2). A predictor with good predictive performance explains a
high proportion of variability in the survival data of the test set, and vice versa a poor predictor explains little variability
in the test set. In a traditional regression setting the R2 statistic is one minus the ratio of the residual sum of squares
and the total sum of squares. Consequently, it ranges from 0 (no explained variation), to 1 (all variation explained). This
definition can however not be used in the context of censored data. Nagelkerke (1991) gives a general definition of the
R2 statistic that can be used for Cox proportional hazard models:

R2 = 1− exp
(
−
2
n
(l(̂β)− l(0))

)
, (1)
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where l(.) denotes the log-likelihood function. Others have also used the R2 statistic to assess predictive performance of
gene expression based predictors of survival (Bair and Tibshirani, 2004; Segal, 2006).
• Brier score: Thequality of a predicted survival function can also be assessedbased on the integratedBrier-Score introduced
by Graf et al. (1999). The Brier-Score BS(t) (Hothorn et al., 2004; Radespiel-Tröger et al., 2003) is defined as a function of
time t > 0 by

BS(t) =
1
n

n∑
i=1

[
Ŝ(t | Xi)2I(ti ≤ t ∧ δi = 1)

Ĝ(ti)
+
(1− Ŝ(t | Xi))2I(ti > t)

Ĝ(t)

]
, (2)

where Ĝ(·) denotes the Kaplan–Meier estimate of the censoring distributionwhich is based on the observations (ti, 1−δi)
and I stands for the indicator function. The values of the Brier-Score range between 0 and 1. Good predictions at time
t result in small Brier-Scores. The numerator of the first summand is the squared predicted probability that individual
i survives until time t if he actually died (uncensored) before t , or zero otherwise. The better the survival function is
estimated, the smaller is this probability. Analogously, the numerator of the second summand is the squared probability
that individual i dies before time t if he was observed at least until t , or zero otherwise. Censored observations with
survival times smaller than t are weighted with 0. The Brier-score as defined in Eq. (2) depends on t . It makes sense to
use the integrated Brier-Score (IBS) given by

IBS = [max(ti)]−1
∫ max(ti)

0
BS(t)dt. (3)

as a score to assess the goodness of the predicted survival functions of all observations at every time t between 0 and
max(ti), i = 1, . . . ,N . Note that the IBS is also appropriate for prediction methods that do not involve Cox regression
models: it is more general than the R2 and the p-value criteria and has thus become a standard evaluation measure
for survival prediction methods (Hothorn et al., 2006; Schumacher et al., 2007). The Brier score is implemented in the
function sbrier from the package R package ipred, which we use in this article.

As an alternative measure of predictive performance we also considered the variance of the martingale residuals in the
Cox model. However, we found that this measure is not able to discriminate very well between between good and poor
predictors in the considered setting (data not shown). It is therefore omitted here.
As a preliminary step to our real data study,wehave simulated twodata sets, onemimicking a situationwithnopredictive

information for survival contained in the gene expression and the other mimicking a situation with predictive information
for survival in gene expression. Our goal was to assess whether the abovemeasures are indeed able to distinguish predictors
with poor predictive performance and from predictors with good predictive performance. Comparing the average of the
performance measures over the simulated data sets, we observed, as expected, a dramatic decrease of the p-value and Brier
score from simulated data set 1 to simulated data set 2, and similarly a dramatic increase of the R2 statistic (data not shown).
This indicates that the metrics are indicative of predictive performance.
The integrated Brier score may be the metric of choice as it is based on predicted survival curves, which are output

by most survival prediction methods. Hence, it can be used even when the Cox model does not hold. There is however a
practical argument in favor of the p-value and R2 as measures of predictive performance, which lies in the fact that they
are well understood by life scientists. Life scientists have initiated the development of gene expression predictors of clinical
outcome and they will also be the end users. It is therefore important that they understand the evaluation of a predictor’s
performance. This may be achieved by explaining, e.g. the Brier score in detail. Our experience is that they often find this too
abstract a notion to understand. Although they are willing to accept our findings based on, e.g. the Brier score, they highly
appreciate the communication of results in terms of a metric for which they have developed intuition, like the p-value
and R2.

3.3. Analysis of real-life data sets

In this section, three publicly available data sets are analyzed: the breast cancer data set by Van ’t Veer et al. (2002), the
AML data set by Bullinger et al. (2004) and the DLBCL data set by Rosenwald et al. (2002).

3.3.1. Design of real-life data sets
The breast cancer data set by Van ’t Veer et al. (2002) is available at http://www.rii.com/publications/2002/vantveer.html,

and consists of 295 samples measured on cDNA arrays. Each gene expression profile consists of 24885 genes. There are no
missing values in the data set. Following Van Houwelingen et al. (2006), we reduce the number of genes on the basis of the
p-values from the Rosetta error model. Genes with a p-value less than 0.01 in 45 of the 295 samples are removed, leaving
5057 genes in the data set. The overall survival (death due to any cause) is taken as the endpoint.
The AML data set of Bullinger et al. (2004) can be downloaded from the GEO data base with accession number GSE425.

It comprises 119 gene expression profiles, each made up of 6283 genes. We remove samples with more than 1800 missing
values, 13 in total. We also remove genes who had over 20%missing. This leaves us with a data set of 103 expression profiles
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Fig. 1. Box plot of results for the real-life data sets: p-value.

containing 4673 genes. Remainingmissing values are imputed using the R function impute.knn from the impute package.
The overall survival data is used as the endpoint in the analysis.
The DLBCL data set by Rosenwald et al. (2002) is available at http://llmpp.nih.gov/DLBCL/. It consists of 240 samples with

expression profiles of 7399 genes. Missing values are imputed using the R-package knn.impute. Again overall survival is
used for analysis.

3.3.2. Real-life data sets results
Before applying the survival prediction methods to each data set, we apply the globaltest procedure by Goeman et al.

(2005) to each real-life data set. The test reveals that in all data sets there is a significant association between survival times
and gene expression, which should be picked up by each method.
The real-life data sets are randomly split into training and test setswith a 2:1 ratio. To ensure that the evaluationmeasures

do not depend on the particular split into training and test sets, we generate 50 random training/test splits for each data
set. The survival prediction methods are applied to the training sets, and the test sets are used for the calculation of the
evaluation measures.
Figs. 1–3 present box plots of the results for each evaluation measure. The box plots are grouped by method, with three

box plots (corresponding to the three real-life data sets) per method. The coding of the methods underneath the box plots is
explained in Tables 2–4 (given in the Appendix). These tables also contain the three evaluation criteria for each considered
method and each data set. The median and IQR are given to match the characteristic features of the box plots.
A small p-value indicates a good performing method. It can be seen from Fig. 1 and Table 2 that the L2-penalized

Cox regression has the lowest p-values for all three data sets. Moreover, its p-values also have the lowest spread of all
methods. The L2-penalized Cox regression is closely followed by partial Cox regression with one component. Most methods
outperform the simple Cox regression with univariate gene selection in all three data sets. Some exceptions are the bagging
and random forest methods which perform worse in the Van ’t Veer breast cancer data set, and the supervised principal
component method in Rosenwald’s DLBCL data set. Both the partial Cox regression and the supervised principal component
method perform mostly better with one component than with two.
Good survival prediction methods explain much variation, i.e. have a high coefficient of determination R2. It can be seen

that, depending on the data set, the L2-penalized Cox regression and the partial Cox regression have the highest R2 values.
Most methods explain greater variation than the simple Cox regression with univariate gene selection. Some exceptions
are the L1-penalized Cox regression and (again) the bagging and random forest methods which yield a lower R2 in the
Van ’t Veer breast cancer data set.
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Fig. 2. Box plot of results for the real-life data sets: R2 .

Fig. 3. Box plot of results for the real-life data sets: Brier score.
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Table 2
Results for the real-life data sets: p-value

Method Method coding Data set name Data set coding Median IQR

Cox regression with 10 best genes M1 Bullinger bul 0.171 0.387
Cox regression with 10 best genes M1 Rosenwald ros 0.038 0.124
Cox regression with 10 best genes M1 Van ’t Veer vee 0.006 0.041

L2-penalized Cox regression M2 Bullinger bul 0.044 0.103
L2-penalized Cox regression M2 Rosenwald ros 0.002 0.018
L2-penalized Cox regression M2 Van ’t Veer vee 0.002 0.012

L1-penalized Cox regression M3 Bullinger bul 0.132 0.206
L1-penalized Cox regression M3 Rosenwald ros 0.013 0.092
L1-penalized Cox regression M3 Van ’t Veer vee 0.009 0.022

Partial Cox regression (1 comp) M4 Bullinger bul 0.055 0.132
Partial Cox regression (1 comp) M4 Rosenwald ros 0.005 0.050
Partial Cox regression (1 comp) M4 Van ’t Veer vee 0.004 0.013

Partial Cox regression (2 comp) M5 Bullinger bul 0.086 0.145
Partial Cox regression (2 comp) M5 Rosenwald ros 0.010 0.053
Partial Cox regression (2 comp) M5 Van ’t Veer vee 0.003 0.019

Super PCA (1 comp) M6 Bullinger bul 0.084 0.220
Super PCA (1 comp) M6 Rosenwald ros 0.028 0.156
Super PCA (1 comp) M6 Van ’t Veer vee 0.005 0.022

Super PCA (2 comp) M7 Bullinger bul 0.109 0.196
Super PCA (2 comp) M7 Rosenwald ros 0.054 0.155
Super PCA (2 comp) M7 Van ’t Veer vee 0.008 0.044

Bagging (100 trees) M8 Bullinger bul 0.074 0.146
Bagging (100 trees) M8 Rosenwald ros 0.009 0.088
Bagging (100 trees) M8 Van ’t Veer vee 0.016 0.077

Random forest (100 trees) M9 Bullinger bul 0.084 0.190
Random forest (100 trees) M9 Rosenwald ros 0.016 0.089
Random forest (100 trees) M9 Van ’t Veer vee 0.013 0.068

Table 3
Results for the real-life data sets: R2-value

Method Method coding Data set name Data set coding Median IQR

Cox regression with 10 best genes M1 Bullinger bul 0.054 0.079
Cox regression with 10 best genes M1 Rosenwald ros 0.053 0.062
Cox regression with 10 best genes M1 Van ’t Veer vee 0.075 0.052

L2-penalized Cox regression M2 Bullinger bul 0.112 0.091
L2-penalized Cox regression M2 Rosenwald ros 0.113 0.103
L2-penalized Cox regression M2 Van ’t Veer vee 0.095 0.064

L1-penalized Cox regression M3 Bullinger bul 0.065 0.073
L1-penalized Cox regression M3 Rosenwald ros 0.074 0.077
L1-penalized Cox regression M3 Van ’t Veer vee 0.068 0.047

Partial Cox regression (1 comp) M4 Bullinger bul 0.103 0.081
Partial Cox regression (1 comp) M4 Rosenwald ros 0.094 0.086
Partial Cox regression (1 comp) M4 Van ’t Veer vee 0.079 0.058

Partial Cox regression (2 comp) M5 Bullinger bul 0.135 0.083
Partial Cox regression (2 comp) M5 Rosenwald ros 0.108 0.092
Partial Cox regression (2 comp) M5 Van ’t Veer vee 0.113 0.072

Super PCA (1 comp) M6 Bullinger bul 0.084 0.100
Super PCA (1 comp) M6 Rosenwald ros 0.059 0.062
Super PCA (1 comp) M6 Van ’t Veer vee 0.078 0.064

Super PCA (2 comp) M7 Bullinger bul 0.122 0.097
Super PCA (2 comp) M7 Rosenwald ros 0.070 0.079
Super PCA (2 comp) M7 Van ’t Veer vee 0.093 0.072

Bagging (100 trees) M8 Bullinger bul 0.089 0.101
Bagging (100 trees) M8 Rosenwald ros 0.081 0.072
Bagging (100 trees) M8 Van ’t Veer vee 0.058 0.049

Random forest (100 trees) M9 Bullinger bul 0.084 0.126
Random forest (100 trees) M9 Rosenwald ros 0.071 0.077
Random forest (100 trees) M9 Van ’t Veer vee 0.061 0.055
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Table 4
Results for the real-life data sets: Brier score

Method Method coding Data set name Data set coding Median IQR

Cox regression with 10 best genes M1 Bullinger bul 0.221 0.058
Cox regression with 10 best genes M1 Rosenwald ros 0.220 0.045
Cox regression with 10 best genes M1 Van ’t Veer vee 0.208 0.036

L2-penalized Cox regression M2 Bullinger bul 0.197 0.042
L2-penalized Cox regression M2 Rosenwald ros 0.206 0.063
L2-penalized Cox regression M2 Van ’t Veer vee 0.220 0.054

L1-penalized Cox regression M3 Bullinger bul 0.222 0.044
L1-penalized Cox regression M3 Rosenwald ros 0.223 0.064
L1-penalized Cox regression M3 Van ’t Veer vee 0.220 0.037

Partial Cox regression (1 comp) M4 Bullinger bul 0.197 0.029
Partial Cox regression (1 comp) M4 Rosenwald ros 0.201 0.040
Partial Cox regression (1 comp) M4 Van ’t Veer vee 0.192 0.029

Partial Cox regression (2 comp) M5 Bullinger bul 0.197 0.047
Partial Cox regression (2 comp) M5 Rosenwald ros 0.211 0.055
Partial Cox regression (2 comp) M5 Van ’t Veer vee 0.222 0.049

Super PCA (1 comp) M6 Bullinger bul 0.196 0.028
Super PCA (1 comp) M6 Rosenwald ros 0.215 0.061
Super PCA (1 comp) M6 Van ’t Veer vee 0.187 0.024

Super PCA (2 comp) M7 Bullinger bul 0.195 0.035
Super PCA (2 comp) M7 Rosenwald ros 0.204 0.041
Super PCA (2 comp) M7 Van ’t Veer vee 0.195 0.037

Bagging (100 trees) M8 Bullinger bul 0.189 0.027
Bagging (100 trees) M8 Rosenwald ros 0.195 0.038
Bagging (100 trees) M8 Van ’t Veer vee 0.196 0.035

Random forest (100 trees) M9 Bullinger bul 0.188 0.022
Random forest (100 trees) M9 Rosenwald ros 0.200 0.034
Random forest (100 trees) M9 Van ’t Veer vee 0.190 0.025

The better the method’s survival prediction, the smaller its Brier score. Both the box plots in Fig. 2 and Table 4 indicate
that the tree-based ensemble methods bagging and random forest have the smallest Brier score, with random forest also
having the smallest IQR. Surprising is the performance of the L1 penalized Cox regression. It performs worse than the Cox
regression with univariate gene selection for all data sets. The L2 penalized Cox regression and two component partial Cox
regression are also outperformed by the simple Cox regression in the Van ’t Veer breast cancer data set.

4. Discussion and conclusion

We have given an inventory of methods that have been proposed to predict survival time using gene expression. We
have reviewed them critically, and compared them in a qualitative manner. Their performance was assessed using real-life
data sets, enabling a quantitative comparison of the methods.
The conclusions from the quantitative comparison are not clear cut. The best method varies depending on the data set

and on the evaluation measure considered. Based on real-life data set results with the p-value and the R2 coefficient, we
conclude that the L2 penalized Cox regression performs best. This is in line with the findings presented in Bovelstad et al.
(2007). However, the results with the Brier score indicate that the ensemble methods, bagging and in particular random
forest, are best. It is not surprising that random forests and bagging are comparatively better with the Brier score than with
other criteria. For the other criteria, we had to use the median of the predicted Kaplan–Meier curve as predictor in a Cox
model, which is somewhat disputable and overlooks a part of the information yielded by the prediction method.
Both the simple Cox regression with univariate gene selection and L1 penalized Cox regression select features from the

gene expression data (as opposed to feature extraction). This gives their features the benefit of a clear interpretation,which is
missing in the other methods. However, all evaluationmeasures indicate that the former performworse thanmethods with
feature extraction. This leads us to believe that survival prediction methods benefit from aggregation of gene expressions.
The extracted features may get a clearer interpretation if the aggregation is steered by biological principles. This may even
improve their predictive power.
Our comparison used statistical arguments to assess the best method for survival prediction. Practical arguments may

also prevail, in particular if there is only a marginal difference between the methods’ performance. For instance, if the
ultimate goal is to design a diagnostic chip, a cost argument will favor the simplest model as it leads to the smallest number
of genes on the chip. Hence, methods like LASSO that have an in-built feature selection may be favored over methods like
Ridge Regression.
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The presented comparison also leads to recommendations for future comparisons. The best survival prediction method
varies with the data set and the evaluation measure. Therefore, future comparisons should include multiple data sets, with
varying characteristics such as tissue type, microarray platform, sample size, et cetera. Survival prediction methods should
performwell over all conditions. Also, several evaluationmeasures should be used until a consensus is reached on the choice
of the criterion for assessing the predictive performance.
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