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A Algorithms used for generating random sets of tuning

parameter values in the tuning parameter value opti-

mization

A random set of values Sit,1, . . . ,Sit,M for the tuning parameters w1, . . . , wM used by SplitWeights,

BlockVarSel, and BlockForest can be obtained as follows:

1. Draw M − 1 values a1, . . . , aM−1 from the uniform distribution U(0,1) and set aM := 1.

2. Permute the values a1, . . . , aM randomly.

The procedure VarProb features the tuning parameters v1, . . . , vM , for which we generate a

random set Sit,1, . . . ,Sit,M of values in the following way:

1. For m = 1, . . . ,M :

(a) Draw u from the uniform distribution U(0,1).

(b) If u < 0.5, draw a value Sunst,it,m from the uniform distribution U(0,
√
pm/pm) and if

u ≥ 0.5 draw a value Sunst,it,m from the uniform distribution U(
√
pm/pm, 1).

2. Standardize the Sunst,it,m values by dividing each value by
∑M

m=1 pmSunst,it,m to ensure

that
∑M

m=1 pmSit,m = 1.

The reason why the Sunst,it,m values are centered about
√
pm/pm (step 1(b)) is that if vm =

(
√
pm/pm)/

∑M
m∗=1 pm∗

√
pm∗/pm∗ , on average there would be

√
pm values drawn from block m

given that
∑M

m=1

√
pm variables are sampled in total. Sampling

√
pm covariates per block is

performed by the procedures BlockVarSel, RandomBlock, and BlockForest.

Lastly, the procedure RandomBlock uses the tuning parameter values b1, . . . , bM . We generate

a random set Sit,1, . . . ,Sit,M of these values as follows:

1. Draw M − 1 values a1, . . . , aM−1 from the uniform distribution U(0,1).

2. Sort a1, . . . , aM−1 and denote the sorted sequence by a∗1, . . . , a
∗
M−1.

3. Calculate the values Sit,1, . . . ,Sit,M through a∗1, a
∗
2 − a∗1, . . . , a

∗
M−1 − a∗M−2, 1− a∗M−1.
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B Overview of the data sets used in the comparison study

Table S1: Detailed overview of the data sets used in the comparison study. The following in-
formation is given: data set label, the numbers of covariates per block, where ’#’ indicates the
cardinality, the sample size and the percentage of observations for which the survival time was
uncensored.

data set

label

# clini-

cal

# CNV # miRNA # muta-

tion

# RNA Sample

size

% of uncen-

sored obser-

vations

BLCA 4 57964 825 18650 23081 310 32 %

BRCA 8 57964 835 18847 22694 863 9 %

CESC 4 57447 – 18998 22398 206 15 %

COAD 5 57964 802 19786 22210 350 22 %

ESCA 4 57964 763 15162 25494 121 21 %

GBM 3 57964 – 17106 23288 154 73 %

HNSC 5 57964 793 17840 21520 411 35 %

KIRC 6 57964 725 12017 22972 322 22 %

KIRP 4 57964 593 11610 32525 249 10 %

LGG 3 57964 645 13389 22297 454 21 %

LIHC 4 57964 776 15924 20994 298 28 %

LUAD 6 57964 799 18966 23681 424 30 %

LUSC 7 57964 895 18832 23524 365 39 %

OV 2 57447 975 16837 24508 261 54 %

PAAD 4 57964 612 12882 22348 142 49 %

PRAD 4 57925 585 12416 21769 425 2 %

READ 5 57964 769 – 21896 138 16 %

SARC 2 57964 778 12478 22842 183 16 %

SKCM 5 57964 1002 19488 22248 264 25 %

STAD 6 57967 787 19141 26027 284 27 %

UCEC 3 57447 866 21226 23978 503 13 %
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C Multi-omics data: C index values obtained for the indi-

vidual repetitions of the cross-validation
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Fig. S1: Multi-omics data: C index values obtained for the individual repetitions of the cross-
validation separately for each data set and method – I
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Fig. S2: Multi-omics data: C index values obtained for the individual repetitions of the cross-
validation separately for each data set and method – II
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D Multi-omics data: Analysis of the influence of data set

characteristics on the performance of BlockForest rela-

tive to that of RSF

Except for one data set the differences between the mean C index values obtained using RSF

and that obtained using BlockForest were not larger than 0.02 for any of the data sets, where

BlockForest outperformed RSF for the majority of data sets. The values of the differences between

the mean C index values obtained for these methods differed quite strongly across data sets. This

suggests that there are certain data set specific factors that determine whether or not we can expect

to obtain a considerable improvement through using BlockForest as opposed to RSF. It would be

valuable, if these factors and the forms of their influences on the performance differences between

BlockForest and RSF would be known. In this way, it would be possible to discern situations

in which we can expect BlockForest to perform considerably better than RSF from situations in

which there is not much gain in prediction performance by using BlockForest or in which RSF

might even be preferable.

Therefore, in this section we present an analysis in which we related the values of several data

set specific factors to the values of the differences between the mean C index values obtained

for BlockForest and that obtained for RSF. The latter differences are referred to as diffC in the

following. The investigated data set specific factors are:

• Sample size: n

BlockForest involves M tuning parameters, which makes this algorithm more complex than

standard RSF. We assumed that for larger data sets the optimization of these tuning param-

eters is more stable than for smaller data sets, which could have the effect that, compared to

RSF, for BlockForest there might be a greater gain in prediction performance with increasing

sample size.

• Degree of dominance of the most important block: oneblockimp

We hypothesized that the more the predictions are dominated by one of the blocks, the less

improvement there will be from using BlockForest (or the other variants) in place of RSF.

If almost all information relevant for prediction is contained in only one of the blocks, it is

not necessary to exploit interactions between blocks or, more generally, let the other blocks

participate in the prediction process. Instead, in this situation it is better to consider almost

exclusively covariates from the relevant block. This is, however, already accomplished by

the standard RSF algorithm, because the covariate with the best value of the split criterion

among the mtry randomly sampled covariates will in general stem from the relevant block.

By contrast, any potential upweighting of the other blocks performed by the variants will in

such situations not be beneficial and can even be harmful. For example, the randomization

of the block choice as performed by BlockForest and RandomBlock is counter-productive if

there is only one relevant block, because it would be best to simply always use the relevant

block in such situations. A notable exception to the tendency of the standard RSF algorithm

to select mostly covariates from the (single) relevant block is the case in which this block

involves only a few covariates (which happens, e.g., in the case of the clinical block). In this
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situation, the covariates from the relevant block will be selected too infrequently, because

of the fact that the great majority of the mtry sampled covariates will stem from the other

blocks. For this reason, it will frequently be the case that a covariate from a non-informative

block will divide the samples in the current node better than the best sampled covariate

from the informative block simply by chance in this setting.

We measured the degree of dominance of the most important block through the maximum

of the bm values, m = 1, . . . ,M , associated with the RandomBlock variant. This metric is

denoted as oneblockimp in the following.

• Strength of the biological signal: signal

It would be interesting to know, whether the level of biological signal contained in the

covariate data has a notable effect on the gain in prediction performance to expect by

using BlockForest as opposed to RSF. For example, if it would be known that a particular

strong gain in prediction performance can be expected in situations in which the biological

signal is strong, it would be particularly recommended to use BlockForest instead of RSF

in situations in which a decent level of prediction performance is already attainable using

conventional prediction methods that do not take the block structure into account. If, by

contrast, a considerable improvement through using BlockForest can be expected for weaker

biological signals in particular, BlockForest can be employed effectively in situations in which

conventional prediction methods do not deliver good results.

We measured the degree of biological signal present in a data set by the average of the mean

C index value obtained using BlockForest and the mean C index value obtained using RSF.

This metric is referred to as signal in the following. Note that since the target metric in our

analysis is the difference between the mean C index value obtained using BlockForest and

the mean C index value obtained using RSF, the plot of the values of this difference diffC

against the values of signal corresponds to a BlandAltman plot.

In Figure S3, the values of diffC are plotted against the values of each of the quantities described

above.

There seems to be a general trend that the improvements obtain by using BlockForest become

larger for larger data sets. All data sets for which we observe a (small) deterioration by performing

BlockForest in place of RSF are small to medium sized data sets. However, there are also small

data sets for which BlockForest performed notably better than RSF. For example, in the case of

the smallest data set the improvement of BlockForest over RSF was the strongest among all data

sets.

The plot of the values of diffC against those of oneblockimp suggests the following: If no block

is dominating the others, a strong improvement might be obtained through the use of BlockForest,

but the mere fact that no block is dominating is not a sufficient condition for a strong improvement.

The BlandAltman plot of the values of diffC against those of signal resembles a funnel: For

smaller values of signal the values of diffC vary more strongly, that is, for weaker signals, there

were more often stronger improvements by performing BlockForest instead of RSF, but also more

often merely weak improvements and also (slight) impairments.
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Fig. S3: Multi-omics data: Differences between the mean C index values obtained using Block-
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E Multi-omics data: Optimized block-specific tuning pa-

rameter values associated with the different variants

Figures S4 to S13 show the optimized values of the tuning parameters associated with the different

variants for each data set.

The variable selection probabilities vm optimized using VarProb are for most data sets con-

siderably larger for the clinical block than for most or all of the omics blocks (Figures S4 and

S5). However, for many data sets there are also omics blocks with high optimized values of vm.

This demonstrates that, depending on the considered data set, it can also be effective to sample

covariates from certain high-dimensional blocks with the same or even a higher probability as

covariates from the low-dimensional clinical block.

The optimized weights wm associated with SplitWeights (Figures S6 and S7) tend to feature a

high variability across cross-validation iterations, which is congruent with the fact that this variant

did not perform well in comparison to RSF.

For BlockVarSel the rankings of the blocks with respect to their optimized weights (Figures

S8 and S9) are very similar to that obtained with SplitWeights. However, the variabilities of the

optimized weights tend to be smaller for BlockVarSel. This reduced variability might be explain-

able by the fact that with BlockVarSel variables from each block are drawn for each split, which

should make the optimization more stable. Note that BlockVarSel quite clearly outperformed

SplitWeights, where the superiority of BlockVarSel over SplitWeights might in part be due to the

more stable optimization associated with the former procedure.

The values of the block selection probabilities bm optimized using RandomBlock (Figures

S10 and S11) tend to be relatively stable across the cross-validation iterations. As written in

Section 2.2.5 of the main paper the optimized block selection probabilities can give indications of

the relative importances of the different blocks for prediction. We obtained the following mean

block selection probabilities across the data sets (sorted from highest to lowest): 0.43 (mutation),

0.29 (RNA), 0.12 (clinical), 0.11 (CNV), 0.07 (miRNA). Thus, the mutation block and the RNA

block seem to be by far the most important blocks. Note however that the bm values depend

strongly on the specific set of blocks available in the data sets. As noted in Section 2.2.5 of the

main paper, for individual data sets, small optimized bm values must be interpreted with great

care, because important blocks can be attributed small optimized bm values. The latter can occur

for blocks that share much predictive information with another block that contains (slightly)

more predictive information. In such cases, the latter block will be attributed a high bm value,

whereas the former block that contains (slightly) less predictive information will be attributed

a small bm value even though it contains much predictive information. This is more efficient

than attributing high bm values to both blocks, because if two blocks with strongly overlapping

predictive information had high selection probabilities, the information considered across different

splits would be more similar. By contrast, if the predictive information contained in two blocks

is only mildly overlapping, the bm values attributed to the two blocks will not strongly correlate

and will be similar if the levels of predictive information contained in the two blocks are similar.

We averaged the optimized bm values per data set for each block and investigated the corre-

lations of these averaged block selection probabilities between the blocks. The strongest negative

correlation (r ≈ −0.90) we observed was that between the mutation block and the RNA block.
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In Section 2.2.5 of the main paper we described the mechanism that if two informative blocks

feature strongly overlapping predictive information, one of these blocks will be attributed a large

bm value and the other one a small bm value. The fact that for most data sets either the bm

value of the mutation block was very large and that of the RNA block very small or vice versa,

suggests that the predictive information contained in these two blocks is both strong and strongly

overlapping. The unrealistic alternative explanation for this fact would be that for each of these

data sets either the mutation block or the RNA block is important and the respective other one

is unimportant. This scenario is unrealistic, because each of these data sets features patients of

a different cancer type and both mutation data and RNA data are known to be predictive of

cancer [1, 2]. The fact that the RNA block is an informative block throughout cancer types will

also become evident in the results obtained for the setting with only two blocks (see Section E

of the Supplementary Material), the clinical block and the RNA block, where the optimized bm

values obtained for the RNA block were high for the vast majority of data sets. The correlation of

the (averaged) bm values between the clinical block and the mutation block was -0.43, while it was

0.10 between the clinical block and the RNA block. The fact that the latter correlation is small

and, more importantly, non-negative suggests that the information overlap between the clinical

block and the RNA block is weak, which in turn suggests a high additional predictive value of the

RNA block over the clinical block. By contrast, the fact that the correlation between the clinical

block and the mutation block is negative suggests a stronger information overlap between these

two blocks. Thus, the additional predictive value of the mutation block over the clinical block

might in general be smaller than that of the RNA block over the clinical block.

The optimized weight values associated with BlockForest (Figures S12 and S13) are quite

similar to those associated with BlockVarSel. However, with BlockForest there are more often

data sets for which there are several blocks with very large optimized weights. The observation

that for BlockVarSel there were less often data sets for which the optimized weights are large

for several blocks can be explained by the fact that when considering all blocks for each split

as in BlockVarSel, a clear-cut ranking between the values of the weights used for the different

blocks is more important. Suppose, for example, that two of the blocks contain much predictive

information, where the levels of predictive information differ between these two blocks. In this

situation BlockVarSel will ideally assign the largest weight to the block with the most predictive

information and a smaller, second largest weight to the block with the second most predictive

information. Attributing the largest weight to the most important block ensures that this block

is used often enough for splitting. However, attributing a smaller weight to the second most

important block has the disadvantage that the line to the less important blocks is more blurred as

compared to when the second most important block also has a very large weight. When sampling

randomly from the blocks for each split as performed with BlockForest, for many of the splits the

two blocks with the most predictive information will not be considered simultaneously, which is

why the ranking between the values of the weights used for these two blocks is less important for

BlockForest. The values of the weights used for these two blocks can therefore be both very large,

which makes the line drawn to the less important blocks sharper, having the effect that the two

most important blocks are primarily used for splitting.

10



●

●●

● ● ●● ●

●

●

●

●

●●

●
●●●

●●

●

●●●●

●

●
●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●
●

KIRP LGG

HNSC KIRC

ESCA GBM

CESC COAD

BLCA BRCA

cli
n

cn
v

m
irn

a

m
ut

at
ion rn

a
cli

n
cn

v
m

irn
a

m
ut

at
ion rn

a

0.000

0.001

0.002

0.0000

0.0005

0.0010

0.0015

0.0020

0.000

0.001

0.002

0.003

0.004

0.005

0.00000

0.00025

0.00050

0.00075

0.00100

0e+00

2e−04

4e−04

6e−04

8e−04

0.0000

0.0005

0.0010

0.0015

0.0020

0.00000

0.00005

0.00010

0.00015

0.00020

0.00000

0.00025

0.00050

0.00075

0.00100

0.0000

0.0005

0.0010

0.0015

0e+00

5e−05

1e−04

Block

Tu
ni

ng
 p

ar
am

et
er

 v
al

ue
s

Fig. S4: Multi-omics data: vm values optimized for variant VarProb – I
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Fig. S5: Multi-omics data: vm values optimized for variant VarProb – II
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Fig. S6: Multi-omics data: wm values optimized for variant SplitWeights – I
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Fig. S7: Multi-omics data: wm values optimized for variant SplitWeights – II
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Fig. S8: Multi-omics data: wm values optimized for variant BlockVarSel – I
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Fig. S9: Multi-omics data: wm values optimized for variant BlockVarSel – II
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Fig. S10: Multi-omics data: bm values optimized for variant RandomBlock – I
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Fig. S11: Multi-omics data: bm values optimized for variant RandomBlock – II
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Fig. S12: Multi-omics data: wm values optimized for variant BlockForest – I
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Fig. S13: Multi-omics data: wm values optimized for variant BlockForest – II
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F Clinical covariates plus RNA measurements: C index val-

ues obtained for the individual repetitions of the cross-

validation
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Fig. S14: Clinical covariates plus RNA measurements: C index values obtained for the individual
repetitions of the cross-validation separately for each data set and method – I
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Fig. S15: Clinical covariates plus RNA measurements: C index values obtained for the individual
repetitions of the cross-validation separately for each data set and method – II
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G Clinical covariates plus RNA measurements: Analysis of

the influence of data set characteristics on the perfor-

mance of BlockForest relative to that of RSF

In Section D of the Supplementary Material we presented an analysis of the influence of certain

data set characteristics on the performance of BlockForest relative to that of RSF for the multi-

omics data. We performed an analogous analysis for the case of having clinical covariates plus RNA

measurements. The design of the analysis is the same as that of the analysis presented in Section D

with a single exception: Instead of investigating the influence of the maximum oneblockimp of the

bm values optimized using RandomBlock, we investigated the influence of the optimized bm value

of the clinical block. The latter will be denoted as bclin in the following. We expected that the

larger the value of bclin becomes, the stronger will be the improvement of BlockForest over RSF.

We assumed the latter to be the case, because the larger the optimized selection probability bm

of the clinical block becomes, the more predictive information will be contained in the clinical

covariates, making it increasingly effective to exploit the predictive information contained in these

covariates.

In Figure S16, the values of diffC are plotted against the values of each of the three quantities

n, bclin, and signal.

In comparison to the multi-omics case, we do not see a clear positive relation between the

sample size n and the values of diffC. While the greatest diffC values were obtained for very small

data sets, the three data sets for which RSF performed better than BlockForest were also small to

medium sized. The fact that we observe a less strongly positive association between n and diffC

than in the multi-omics case might be explained by the fact that when including only the clinical

block and the RNA block, only two tuning parameters have to be optimized instead of five (or

sometimes four) in the multi-omics case. The optimized tuning parameter values can be expected

to be more precise when there are only two blocks compared to when there are five (or four), in

particular for small sample sizes.

As we had expected, there is a quite clear positive association between the values of bclin and

the diffC values. The bclin values of the two data sets for which BlockForest performed the worst

in comparison to RSF were smaller than 0.1. For these two data sets the clinical covariates do

obviously carry little to no predictive information that is not contained in the RNA block, which

is why it is not expected that BlockForest would perform better than RSF here. Instead, if the

clinical block carries almost no predictive information, we would rather expect BlockForest to

perform worse than RSF for the following reason: Given the fact that with BlockForest for each

split, each block is sampled with probability 0.5, where this sampling is repeated until at least one

block is drawn, for 33% of the splits only covariates from the clinical block are considered. Thus,

given the fact that there is almost no predictive information in the clinical block, at least 33% of

splits in the forest are not informative, independently of the optimized values of the weights w1

and w2.

The relation between signal and diffC seems to be weakly negative overall, meaning that the

improvement in prediction performance by performing BlockForest instead of RSF tends to be

stronger for less strongly predictive covariates. Nevertheless, for the three data sets for which RSF
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performed worse than BlockForest, the signal is rather weak.
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Fig. S16: Clinical covariates plus RNA measurements: Differences between the mean C index
values obtained using BlockForest and that obtained using RSF plotted against the values of ’n’
(left panel), ’bclin’ (middle panel), and ’signal’ (right panel). The blue lines show LOESS estimates
obtained using a re-descending M estimator.
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H Clinical covariates plus RNA measurements: Optimized

block-specific tuning parameter values associated with

the different variants

The values of the optimized selection probabilities associated with VarProb (Figures S17 and S18)

are for all data sets larger for the clinical block than those for the RNA block. This suggests

that the clinical block contains some predictive information for each data set. For most data sets,

the optimized selection probabilities are very small for the RNA block and comparably large for

the clinical block. This was different for the multi-omics data, where there were frequently large

optimized selection probabilities for some omics blocks.

For most data sets, the weight values of the clinical block optimized with SplitWeights (Figures

S19 and S20) take the value one for the great majority of the cross-validation iterations, while the

optimized weights of the RNA block are much smaller and quite variable across the cross-validation

iterations.

The weight values optimized with BlockVarSel (Figures S21 and S22) are similar to those

optimized with SplitWeights. However, the optimized weights of the RNA block tend to be larger

than those optimized with SplitWeights. This can be explained as follows: For BlockVarSel

the weights of the clinical block do not have to be as high in comparison to that of the RNA

block, because of the fact that with BlockVarSel for each split covariates from both blocks are

drawn. Therefore, the average numbers of clinical covariates considered per split are higher for

BlockVarSel. As a consequence the value of the weight attributed to the clinical block compared

to that attributed to the RNA block must be smaller for BlockVarSel in order to obtain the same

frequency of splits performed using one of the clinical covariates as when using SplitWeights.

For most data sets, the values of the block selection probabilities optimized using RandomBlock

(Figures S23 and S24) differ only weakly across the cross-validation iterations. For 18 of the 20

data sets the optimized block selection probability of the RNA block is larger than that of the

clinical block. The mean optimized block selection probabilities across data sets are as follows:

0.24 (clinical), 0.76 (RNA). In the median, the block selection probability of the RNA block was

3.7 higher than that of the clinical block. This can be interpreted as meaning that the RNA block

was in the median 3.7 times as important for prediction as the clinical block for this collection of

data sets when considering only the clinical block and the RNA block.

While the optimized weight of the clinical block was higher than that of the RNA block for

the majority of data sets in the case of BlockVarSel, it is the other way round in the case of

BlockForest (Figures S25 and S26). This can be explained as follows: Due to the block sampling

procedure of BlockForest, for 33% of the splits only the clinical block is considered for splitting

with this method. Therefore, independently of the optimized weights, with BlockForest at least

33% of the splits will use a clinical covariate for splitting. This is not the case with BlockVarSel,

where the clinical covariates compete more strongly with the RNA measurements. The clinical

block is most often attributed a higher weight in this setting to compensate for the fact that there

are many more RNA measurements than clinical covariates.
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Fig. S17: Clinical covariates plus RNA measurements: vm values optimized for variant VarProb –
I
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Fig. S18: Clinical covariates plus RNA measurements: vm values optimized for variant VarProb –
II
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Fig. S19: Clinical covariates plus RNA measurements: wm values optimized for variant
SplitWeights – I
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Fig. S20: Clinical covariates plus RNA measurements: wm values optimized for variant
SplitWeights – II
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Fig. S21: Clinical covariates plus RNA measurements: wm values optimized for variant Block-
VarSel – I
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Fig. S22: Clinical covariates plus RNA measurements: wm values optimized for variant Block-
VarSel – II
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Fig. S23: Clinical covariates plus RNA measurements: bm values optimized for variant Ran-
domBlock – I
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Fig. S24: Clinical covariates plus RNA measurements: bm values optimized for variant Ran-
domBlock – II
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Fig. S25: Clinical covariates plus RNA measurements: wm values optimized for variant BlockForest
– I
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Fig. S26: Clinical covariates plus RNA measurements: wm values optimized for variant BlockForest
– II
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