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A Descriptions of existing work on multivariate trees, mul-

tivariate tree ensembles, and approaches to identifying

interactions from tree ensembles

A.1 Overview and discussion of multivariate tree approaches

In the following, the term “local split optimization” will denote the process of finding a split that

divides the current node optimally with respect to some specified criterion. The term “global split

optimization”, in contrast, will denote the process of finding the values of all splits in a tree that

deliver an optimal tree with respect to a specified criterion. Lastly, multivariate trees with linear

decision boundaries will be referred to as “oblique (decision) trees” (Murthy et al., 1994).

An early example of multivariate trees are multivariate CARTs (Breiman et al., 1984). In

this procedure, to select each split, a (locally) best split candidate is considered, as well as one

multivariable linear split candidate that uses all variables, where the multivariable split candidate

is optimised using an adhoc procedure. Utgoff and Brodley (1990) present an algorithm to con-

struct oblique trees that uses the absolute error correction procedure and the pocket algorithm for

optimisation. These trees use varying subsets of variables for the splits, where these subsets are

obtained via backward selection. The use of backward selection in this context seems problematic

because iteratively removing variables can result in members of strongly interacting variable pairs

being removed if there are confounding effects caused by the influence of other variables that

mask the interaction effects (Gheyas and Smith, 2010). Sethi and Yoo (1994) again use the pocket

algorithm in the construction of oblique trees, but in their approach all variables are used in each

split. These trees are not likely suitable for use in a random forest. As shown by Breiman (2001),

for a good predictive performance of a random forest, it is important that the predictions of the

trees are diverse in addition to being precise. The latter is unlikely if all variables are used in each

split. For a comparison study of early approaches to construct multivariate trees, see Brodley and

Utgoff (1995). Like Breiman et al. (1984), Murthy et al. (1994) use the best univariable split and

an optimised multivariable split, where they employ randomisation to improve the multivariable

split. More precisely, they use an algorithm similar to that of Breiman et al. (1984), but employ

two randomisation procedures to improve the found split. First, they perform multiple searches

starting from different random splits and second, they attempt to improve the split resulting from

the optimisation algorithm by shifting it into a random direction. They refrain from spending

excessive effort on locally optimising splits because even if the best locally optimal split is found,

this split will likely not lead to the best possible tree. When the search space holds an abun-

dance of good solutions, a randomised search performs well (Gupta et al., 1994). The algorithm

by Murthy et al. (1994), however, uses all variables in the multivariable splits by default; the

authors suggest using existing variable selection techniques, such as stepwise selection, to choose

the relevant variables in the splits.

Wickramarachchi et al. (2015) distinguish three types of algorithms for constructing multi-

variate trees: 1) algorithms that use optimisation techniques for finding the splits; the classical

approaches described above fall into this category, a recent example are “optimal classification

trees” (Bertsimas and Dunn, 2017) (see further down for details); 2) algorithms that use existing

statistical approaches (e.g., linear discriminant analysis) to find splits (Loh and Shih, 1997; Gama

3



and Brazdil, 1999; Li et al., 2003; Kolakowska and Malina, 2005; López-Chau et al., 2013); 3)

algorithms that use heuristic approaches to find splits (Amasyah and Ersoy, 2008; Manwani and

Sastry, 2012; Robertson et al., 2013; Wickramarachchi et al., 2015). An interesting exception to

this classification are omnivariate decision trees (Yıldız and Alpaydın, 2001). With the latter, for

each split different model types are considered, and the data are used to select the best model

type. Yıldız and Alpaydın (2001) argue that it is likely beneficial if the first splits in the trees

are more complex, whereas the splits closer to the leaf nodes can be simpler. This is because the

samples in these nodes are more homogeneous, and because the sample sizes are smaller.

An important recent contribution, mentioned previously, are optimal classification trees (Bert-

simas and Dunn, 2017). These trees differ from conventional trees in that the splits in these

trees are not found in a sequential manner by local optimisation, but instead, using mixed-integer

optimisation, the whole trees are constructed at once in such a way that the training error is

minimised. The construction of such optimal trees had not been computationally tangible until

recently and is still computationally demanding. Bertsimas and Dunn (2017) present algorithms

both for finding optimal oblique classification trees and optimal classification trees that use uni-

variable splitting. Interestingly, these optimal trees do not seem to overfit the training data. They

compare both optimal tree versions with univariate and oblique trees that use local optimisation

in a large-scale benchmark study. Interestingly, they find that the optimal oblique classification

trees outperform the other variants. This observation that oblique trees particularly benefit from

global optimisation of the splits might be explained by the fact that multivariable splits are more

sophisticated than univariable splits. The great flexibility of multivariable splits makes it likely

that the optimal tree is associated with a partition of the variable space that is close to the

partition associated with optimal predictive performance. This flexibility may be less beneficial

when recursively growing the trees using local optimisation. While the multivariable splits found

using local optimisation are likely still better than univariable splits found using local optimi-

sation because the search space associated with multivariable splitting is larger, locally optimal

multivariable splits still suffer from the fact that a locally optimal split is rarely globally optimal.

A.2 Random forest-based approaches that use multivariate trees

The underlying concept of rotation forests (Rodŕıguez et al., 2006) is to learn conventional univari-

ate trees on different transformations of the data set. Each of the variables in these transformed

data sets contains information from several of the original variables. More precisely, before train-

ing each tree, the available variables are randomly divided into K subsets and principal component

analysis (PCA) is applied to each subset and the original data substituted by the principal com-

ponents. In the latter procedure, the coefficients of the principal components are learned using

random subsets of the observations, but the trees are learned using all observations. Rodŕıguez

et al. (2006) state that the idea of this proceeding is to attain both accuracy of the tree predictions

and diversity between the different trees. Gashler et al. (2008) present the Mean Margins Deci-

sion Tree Learning (MMDT) algorithm for finding splits that involve all variables in oblique trees

and use bagging to form forests of such trees. They recommend using a mixed ensemble of trees

that involves both univariate trees and oblique trees constructed using the MMDT algorithm. In

the approach “oblique random forests”, presented by Menze et al. (2011), multivariable splits are
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learned using conventional regression methods. These splits do not involve all variables, but sub-

sets of mtry variables, sampled randomly at each split as in conventional random forests. Possible

choices for the regression method used to learn the multivariable splits are ridge regression, logistic

regression, or partial least squares regression. Canonical correlation forests (Rainforth and Wood,

2015) transform the data using canonical correlation analysis before each split and subsequently

choose the best axis-aligned splits in the transformed data, which are oblique splits in the original

variable space.

A.3 Approaches to identifying interactions from tree ensembles

Ishwaran (2007) considers a new variable importance measure, similar to the classical permutation

variable importance of random forests. As a first step towards measuring the importance of the

interaction effect between two variables, this new variable importance measure is calculated with

respect to perturbing the influence of both variables jointly and with respect to perturbing each

of the two variables separately. This results in three values, one measuring the influence of both

variables taken together and two measuring the separate influence of each variable. Subsequently,

to measure the disparity between the joint influence of the variables and their separate influences,

the sum of the two values measuring the individual influences of the variables is subtracted from

the value measuring the joint influence of the variables. These differences are denoted “paired

association” values in Ishwaran (2007). Both, strongly positive and strongly negative values of

the paired association are assumed to be indicative of interaction effects, if the univariable im-

portance values of both involved variables are reasonably large (Ishwaran, 2007; Ishwaran and

Kogalur, 2020). A very similar approach is presented by Kelly and Okada (2012). Here they

use the classical permutation variable importance and calculate the difference between the sum

of the two importance values that measure the individual influences of the two variables and the

importance value that measures the joint influence of the two variables. Kelly and Okada (2012)

state that positive values of their measure would indicate “positive interactions” and negative

values “negative interactions”; however, it is not stated what the terms “positive” and “negative”

describe in this context. Bureau et al. (2005) had previously considered another approach related

to that of Kelly and Okada (2012). Unlike the latter authors, Bureau et al. (2005) only used the

value measuring the joint of influence of the two variables obtained using the permutation variable

importance measure, but they did not adjust that value for the individual, or rather the marginal

influences of the two variables. Therefore, the approach by Bureau et al. (2005) does not measure

the strength of interaction between the two variables, but the strength of the joint effect.

Dazard et al. (2018) introduce a new interaction importance measure called Interaction Minimal

Depth Maximal Subtree (IMDMS) based on second-order maximal subtrees (Ishwaran et al., 2010).

The latter build upon the concept of maximal subtrees (Ishwaran, 2007), which can be used for

measuring variable importance. Generally, IMDMS focuses on the minimal distance between

splits performed using each of the two members of variable pairs in the hierarchial structures of

the trees. This procedure is based on the notion that interacting variables are more often used in

quick succession for splitting in trees.

The methods presented above are based on conventional trees that use univariable splitting.

However, as noted in the introduction, conventional trees do not sufficiently model interaction
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effects between variables whose effects are only strong used simultaneously. Ng and Breiman (2005)

and, more recently, Yoshida and Koike (2011), present two approaches that use multivariable splits

in the trees. With these approaches, interaction effects are considered directly in the splitting,

whereas in the cases of the methods presented above, these effects were only modeled if the

corresponding variables were selected for univariable splitting. Ng and Breiman (2005) first form

a synthetic variable from each pair with the goal of keeping a large part of the interaction effects

information between the two variables intact. Subsequently, the variable importance values of

these synthetic variables are calculated and set relative to the variable importance values of both

variables used to form the respective synthetic variables. In this approach, it is necessary to

categorise each metric variable. Yoshida and Koike (2011) present an approach SNPInterForest,

which is a random forest-based interaction detection method specifically for SNP data. As in

the case of Ng and Breiman (2005), SNPInterForest forms synthetic variables from all pairs of

variables with the goal of keeping the information on the interaction effects between the variables

in the synthetic variables intact. However, due to the categorical level of measurement of SNP

data, with SNPInterForest it is possible to keep all information intact when forming the synthetic

variables. The latter variables have nine categories, where each of these categories corresponds to

a specific combination of categories of the two SNP variables, which have three categories. The

measure for the degree of interaction between two variables of SNPInterForest is based on the

frequencies with which these variables are present in the same branches of the trees. A threshold

in the measure values for interaction detection is obtained via simulation results in the paper.

A similar idea is considered in Chen and Zhang (2013) who investigate the variable pairs for

potential interaction effects by applying Fisher’s exact test to determine whether both members

in the respective variable pair occur overproportionally often in the same trees.

Li et al. (2016), Basu et al. (2018), and Jiang et al. (2009) present approaches applicable only if

the outcome is binary. The interaction importance measure for variable pairs associated with the

permuted random forest method by Li et al. (2016) focuses on the difference between the prediction

error of a random forest expected after removing the interaction effect between the two respective

variables, and its prediction error expected when keeping intact both the interaction effect and the

corresponding main effects. Here, removing the interaction effect, while keeping the main effects

intact, is performed by permuting the values of both variables within each class. Basu et al. (2018)

introduce a method called iterative random forests for determining high-order interactions among

biomolecules. First, a random forest is grown, where the candidate split variables in the trees are

drawn with probabilities proportional to weights optimised using an iterative scheme based on the

Gini variable importance. Second, a procedure called generalized RIT is applied to the random

forest obtained in the first step to determine tuples of variables that are more frequently used

jointly to classify observations from one of the two classes rather than for the other. This process

is repeated on a fixed number of bootstrap samples of the data set. Subsequently, the identified

tuples from all bootstrap repetitions are collected as candidates for tuples featuring high-order

interactions. For each identified tuple the frequency with which it occurs in the bootstrap samples

is calculated in order to measure the stabilities of the corresponding high-order interactions. Basu

et al. (2018) denote these frequencies as stability scores. Jiang et al. (2009) present an approach

called epiForest that, similarly to SNPInterForest, is exclusively tailored to SNP data. With

epiForest, a small number of promising variables is pre-selected using a forward selection procedure
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based on the Gini importance of a random forest. Next, all possible pairs and triples of variables

are tested for two-way and three-way interaction effects and the resulting p-values are adjusted

for multiple testing using the Bonferroni correction. The latter adjustment does not account for

the variables considered in the testing already being pre-selected, which could lead to an increased

number of false positive results.

Methods for metric outcomes have been proposed by Sorokina et al. (2008) and Du and Linero

(2019). To measure the importance of an interaction between two variables, Sorokina et al. (2008)

compare the predictive performance of so-called Additive Groves of two trees (Sorokina et al.,

2007) that are unrestricted to that of Additive Groves of two trees that are restricted in such away

that they do not model interactions between the two respective variables. Additive Groves of trees

consist of regression trees where the predictions are summed up to obtain the final predictions. In

the case of the restricted Additive Groves of trees, the first tree is restricted to exclude one of the

two variables and the second tree the other. Du and Linero (2019) take a Bayesian perspective in

their method, Dirichlet process forests. These consist of clusters of trees, where trees in the same

cluster focus on detecting a specific interaction.
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B Details on the interaction forest algorithm

B.1 Prediction algorithm

While the split selection and splitting is performed differently with interaction forests than with

conventional random forests, both algorithms result in large numbers of decision trees the leaf

nodes of which feature observations with similar values of the outcome variable. For this reason,

prediction using interaction forests is performed in the same way as in the case of conventional

random forests and their variants. For categorical outcomes, either the point predictions of the

trees are summarized using majority voting to obtain point predictions, or the outcome class

probabilities predicted by the trees are averaged to obtained class probability predictions (option

probability=TRUE in the function interactionfor() of the diversityForest package that al-

lows to construct an interaction forest). For continuous and survival outcomes, the predictions of

the individual trees are averaged; see Ishwaran et al. (2008) for details on the survival case.

B.2 Procedure used for pre-selecting variable pairs that show indica-

tions of interaction effects

In cases with larger numbers of variables, the number of possible variable pairs becomes very

large. Consequently, when considering all possible variable pairs, the individual variable pairs

would be considered too rarely for splitting in the forests, or not at all. This could not only have

a negative effect on the predictive performance, because strongly interacting variable pairs would

be considered too rarely or not at all, but it would also make the ranking of the interaction effects

impossible. For this reason, if the number of possible variable effects is too large, we perform a

pre-selection of promising variable pairs. This pre-selection is performed if the number of possible

variables pairs
(
p
2

)
is larger than 5000, that is, for data sets with p larger than 100. For such

data sets, we pre-select 5000 promising variable pairs. If the dimensionality of the data is not

too large (5000 <
(
p
2

)
< 105), we can simply test each possible variable pair for interaction effect

in the pre-selection. In cases of larger numbers of variables, we integrate the recently introduced

interaction effect screening procedure BOLT-SSI (Zhou et al., 2019) into the pre-selection. For

data sets with more than 30000 variables, we pre-select 30000 variables in a univariate fashion

before applying BOLT-SSI. Below we describe the pre-selection procedure in detail.

If the number of possible variable pairs
(
p
2

)
is smaller than 105 (i.e., for 100 < p < 448) we

test each possible variable pair for interaction effect and select the variables pairs associated with

the smallest p-values out of these tests. Independent of whether the outcome is binary or metric,

for each variable pair (xj1 , xj2) we perform a linear regression of the outcome on xj1 , xj2 , and

xj1 · xj2 . The latter product models the interaction between the two variables. Subsequently,

for each variable pair, we record the p-value of the test of the coefficient of the interaction term

xj1 · xj2 being equal to zero. Finally, we pre-select the 5000 variable pairs with the smallest p-

values of the interaction effects. Performing such a large number of linear regressions becomes

computationally possible through the fastLmPure() function from the R package RcppEigen. If

n > 500, we select randomly a subset of 500 observations to speed up the calculations. In the

latter random selection, we include all observations from the smaller class, if it is represented by

less than or equal to 30 observations in the data set and otherwise condition the smaller class

8



to be represented by at least 30 sampled observations. The latter was performed to avoid the

smaller class to be represented by too few observations in the subset data set. For multiclass

responses with more than two classes, we only consider observations from the two largest classes

and subsequently treat the target variable as a binary variable performing the same pre-selection

algorithm described above. For survival outcomes we only consider observations with observed

survival times and again perform linear regressions in the same way as described above.

If the number of possible variable pairs is larger than 105, that is, if p is larger than 447,

testing each possible variable pair soon becomes too costly from a computational point of view.

A simple procedure to obtain promising variable pairs would be to randomly sample 105 variable

pairs, test each variable pair for interaction effect and keep the variable pairs with the smallest

p-values. However, with this procedure it is likely that we would miss some of the most important

interaction effects, if p is large. For this reason we employ the recently introduced interaction effect

screening procedure BOLT-SSI (Zhou et al., 2019), which aims at finding the most important two-

way interaction effects in high-dimensional data. Using BOLT-SSI, a maximum of p variable pairs

can be selected. Therefore, if p < 5000, the number of variable pairs found using BOLT-SSI

will be less than the number 5000 of variable pairs we want to select. To obtain 5000 selected

variable pairs for p < 5000, first, if n > 200, we select randomly a subset of 200 observations

in the same way as in the case of 100 < p < 448 described above for computational efficiency

and, second, conduct the following procedure: 1) Apply BOLT-SSI to obtain the first p selected

variable pairs. The variable pairs that interact the strongest will be likely among these p variable

pairs; 2) For l = 1, . . . , 20: a) Apply BOLT-SSI to the data, using a subset of bp/3c variables

sampled randomly anew in each iteration; b) Add those variable pairs selected in a) that are

not among the already selected variable pairs; c) Stop if the total number of selected variable

pairs exceeds 5000, in which case only the first 5000 selected variable pairs are kept. Apart from

increasing the number of selected variables, the random subsetting of the variable space in the

latter procedure also avoids that the selected variable pairs are dominated too strongly by a few

variables which interact with many other variables. If the number of selected variable pairs nfound

is still smaller than 5000 after applying this procedure, we proceed as follows: 1) Draw randomly

20·(5000−nfound) from all possible variable pairs not among the already selected variable pairs; 2)

Test each of the variable pairs drawn in 1) for interaction effect (using fastLmPure() as described

in the previous paragraph) and add the 5000− nfound variable pairs associated with the smallest

p-values from these tests to the set of selected variable pairs.

If 5000 ≤ p ≤ 30000, we simply select p variable pairs using BOLT-SSI, again using a random

subset of 200 observations if n > 200. For data sets with p > 30000, applying BOLT-SSI to all

variables would be computationally too challenging. Therefore, if p > 30000, we pre-select 30000

variables by regressing the outcome on each variable using univariable linear regressions and keep

the 30000 variables with the smallest p-values from the tests of the slopes being equal to zero. In

these linear regressions, categorical and survival outcomes are handled in the same way as in the

case of the linear regressions performed for pre-selecting the variable pairs (see above). If n > 500,

these univariable linear regressions are performed using a random subset of 500 observations.

Subsequently, we apply BOLT-SSI to select 5000 promising variable pairs, where this selection is

based on a random subset of 200 observations if n > 200.

Note that the above procedure for pre-selecting the promising variable pairs is of ad hoc
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nature. It cannot be excluded that some relevant interaction effects are missed with this procedure.

However, given the fact that the number 5000 of variable pairs to pre-select is large, most of the

variable pairs with reasonably strong interactions are likely included in the set of pre-selected

variable pairs.

B.3 Handling of unordered categorical covariate variables

The split types presented in Section 3.2.4 of the main paper do not apply directly to unordered

categorical variables. This issue is dealt with in the interaction forest algorithm by converting

unordered categorical variables into ordered variables. The ordering is performed in the same way

as when using the option respect.unordered.factors="order" implemented in the R package

ranger (version 0.12.1) (Wright and Ziegler, 2017). The idea of this option is to take the outcome

into account for ordering the categories in such a way that when moving along the ordering of

the categories, the outcome tends to change in a consistent direction. For example, in the case of

two-class classification the categories are ordered according to the proportion of the corresponding

observations falling into the second class. For multi-class classification, the categories are ordered

according to the first principal component of the weighted covariance matrix. For further de-

tails, see Wright and König (2019) who describe these approaches in detail and evaluate them

empirically.

B.4 Procedure used for drawing p
(j2)
b

When drawing the p
(j2)
b values, that is, the second points in the split point pairs for the bivariable

splits, it has to be made sure that all resulting five bivariate splits are valid. The latter is the

case, if each quadrant in the two-dimensional coordinate system with origin (p
(j1)
b , p

(j2)
b ) contains

at least one observation.

Based on the latter notion, we use the following procedure for drawing p
(j2)
b :

1. Be x
j2|xj1

<p
(j1)

b

and x
j2|xj1

>p
(j1)

b

the subsets of the xj2 values for which the corresponding

observations have xj1 values smaller and larger than p
(j1)
b , respectively. For p

(j1)
b , see step

1.(c)i. of the algorithm for split selection shown in Section 3.2.5 of the main paper.

Moreover, define the following: al := max(min(x
j2|xj1

<p
(j1)

b

),min(x
j2|xj1

>p
(j1)

b

)) and au :=

min(max(x
j2|xj1

<p
(j1)

b

),max(x
j2|xj1

>p
(j1)

b

)). If al ≥ au, draw a new p
(j1)
b value (by going

back to step 1.(c)i. of the algorithm for split selection). In the current implementation, a

maximum of 20 new p
(j1)
b values are drawn. If al is still greater or equal to au by then, we

only use the univariable splits for the drawn variable pair xj1 and xj2 from step 1.(b) of

the algorithm for split selection and continue by drawing a new variable pair. However, in

practice this case can be expected to be very rare.

2. Draw p
(j2)
b by taking the average of two randomly drawn values from the subset of the unique

xj2 values contained in the interval [al, au].

10



B.5 Hyperparameter values used by default

For the number of variable pairs to sample for each split npairs we use min{√p/2, 10}. The

quantity
√
p/2 follows the common rule of thumb of random forests to sample

√
p candidate vari-

ables for each split. We divide
√
p by two, because we sample pairs of variables. The reason for

limiting npairs by ten is computational efficiency. In the large-scale empirical study performed in

Hornung (2020) the performance of diversity forests did not generally improve beyond using only a

few candidate splits. The latter result was independent of the number of variables in the data sets,

where, however, no data sets with more than 240 variables had been included. Nevertheless, it

seems unlikely that for very high-dimensional data sets a larger number of candidate splits would

be beneficial for the following two reasons: First, there was no relevant improvement for larger

numbers of candidate splits in the case of any of the data sets studied in Hornung (2020). Second,

even for very high-dimensional data sets, a maximum of 5000 pre-selected variable pairs is consid-

ered (cf. Section B.2). The latter restriction has the effect that the number of sampled candidate

splits does not vanish in relation to the number of possible splits for very high-dimensional data

sets.

The number of trees to construct for each forest is set to 20000 if EIM values should be

calculated and to 2000 otherwise. The reason for using such a large number of trees is that

this ensures that stable rankings of the important interaction effects are obtained, given that the

number of all possible variable pairs can be quite large and that several lists of EIM values must

be obtained, see Section 3.3 of the main paper. Tree construction is performed fully in C++ in

diversityForest and using all cores available on the system in parallel by default, which is why

so many trees does not pose an issue computationally.

Subsampling of the subsets used for tree construction is performed without replacement, where

sample fractions of 0.7 are used since Probst et al. (2019) found these defaults to be optimal on

average in the case of random forests in a large real data study.

The diversity forest algorithm presented in Hornung (2020) involves a parameter proptry,

which, if set to values smaller than one, limits the number of candidate splits tried in the case

of small nodes to a fixed proportion proptry of all possible splits, in order to avoid risking over-

fitting in small nodes. It was seen in Hornung (2020) that this parameter does not influence the

performance strongly and values of one were often appropriate. Therefore, in the current version

of the interaction forest algorithm, we did not include this parameter. It is implicitly set to the

value one, because the number of sampled candidate splits is not restricted for small nodes. If this

parameter would be included, this would have the effect that for small nodes, smaller numbers

than npairs variable pairs would be sampled in the split selection.

B.6 Procedure for adjusting the raw quantitative EIM values to make

them specific for quantitative interaction effects

As described in Section 3.3 of the main paper, two variables that both have strong univariable

effects will have large raw quantitative EIM values for two of the four quantitative split types,

where the corners of these two split types are opposing in Figure 1 of the main paper. Therefore,

using the raw quantitative EIM values in the case of the quantitative interaction effects would make

it impossible to discern between variable pairs with quantitative interaction effects and variable
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pairs, for which both members have univariable effects only.

In the case of quantitative interaction effects, however, the raw quantitative EIM value will be

large for only one of the four quantitative split types. Based on the latter notion we apply the

following procedure in an effort to make the raw quantitative EIM values for each pair distinctive

for quantitative interaction effects: We adjust each raw quantitative EIM value by subtracting

the maximum of zero and the corresponding raw quantitative EIM value of that quantitative split

type the corner of which (Figure 1 of the main paper) opposes that of the targeted quantitative

split type. These adjusted raw quantitative EIM values will be small for pairs of variables that

both have a univariable effect, but no quantitative interaction effect. Taking the maximum of

zero and the respective raw quantitative EIM values before subtracting the latter is equivalent

to subtracting them only if they are non-negative. This choice was made to prevent meaningless

results in cases in which there are no important quantitative interaction effects in the data: In

such situations, the negative quantitative EIM values will be of similar sizes in absolute terms

as the positive quantitative EIM values. Here, subtracting negative quantitative EIM values can

influence adjusted quantitative EIM values to become large in comparison to the others by chance,

if the subtracted negative quantitative EIM values are large in absolute terms.
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C Real data based exemplary interaction forest analyses

In the following several real data analyses, we will illustrate how interaction forests can be applied

for interaction detection in practice. Note that we are not closely familiar with the subject matters

studied with the investigated data sets. Therefore, we are not able to judge how meaningful

our interpretations of the shown relations are on a context level. These analyses are meant for

illustrative purposes only.

C.1 ’stock’ data – continuous outcome

This data set contains 950 daily stock prices from January 1988 through October 1991, for ten

aerospace companies. The data were obtained from the open science online platform, OpenML

(Vanschoren et al., 2013), by downloading it under the data set ID 223 using the R package of the

same name (version 1.10) (Casalicchio et al., 2017). The names of the companies were anonymized

and the stock prices for one of these companies (”company10”) were flagged as the outcome. Thus,

for this data set, both the outcome and the covariate variables were continuous.

As a first step, we construct an interaction forest and calculate the univariable, the quantitative,

and the qualitative EIM values:

library("diversityForest")

set.seed(1234)

model <- interactionfor(dependent.variable.name = "company10", data = datastock,

importance="both")

The argument importance="both" (default) specifies that both quantitative and qualitative EIM

values should be calculated. As there are only nine variables, we can have a look at the univariable

EIM values printed to the console. The object eim.univ.sorted contained in the object model

produced by the above code contains the univariable EIM values sorted in descending order:

model$eim.univ.sorted

company1 company6 company9 company8 company2 company7 company5

11.8405795 5.1407022 3.9815370 2.7472936 2.4069568 1.3922671 1.3836012

company3 company4

1.3246459 0.9373223

Among all nine companies, the stock prices of company1 seem to be associated the strongest with

those of company10.

The output of interactionfor() is an object of class interactionfor. There is a plot()

function for interactionfor objects. We apply this function as follows:

plot(model)

By default, this function produces three plots, which are shown in Supplementary Figures S1 to

S3. When executing plot(model), the first of these plots will be shown and the remaining plots

are shown by pressing ENTER repeatedly. The first plot shows the univariable, quantitative, and

qualitative EIM values in decreasing order. Looking at the distribution of the univariable EIM

values helps judge if some variables are particularly important. These would have much larger
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univariable EIM values than all other variables. If the largest quantitative or qualitative EIM

values set themselves apart strongly for all remaining values, it is likely that the corresponding

variable pairs feature particularly strong quantitative or qualitative interaction effects. It is,

nevertheless, still important to visualise the bivariable influences of these variables to prevent

false positive results and to learn about the forms of the interaction effects.
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Fig. S1: Result of function plot.interactionfor(): EIM values (’stock’ data set). The values
are sorted in decreasing order.

Supplementary Figure S2 shows the estimated bivariable influences of the two variable pairs

with the largest quantitative EIM values. The sub-captions of the upper and lower panels pro-

vide the information on which types the quantitative interaction effects were classified to by the

interaction forest algorithm (cf. Section 3.3 of the main paper). For example, the sub-caption of
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the upper panels reads “company6 small AND company9 large”. This means that if the stock

prices are low for company6 and at the same time high for company9, this will have an effect on

the stock prices of company10 (i.e., the outcome). However, it is not clear yet from this caption

“company6 small AND company9 large”, how this affects the stock price of company10. The latter

is revealed by the subplots in the upper panels: The LOESS fits deliver considerably larger values

in the upper left corner of the plot and the data points are considerably darker in this region,

where darker values correspond to larger outcome values. The subplot in the upper-right panel

confirms that the LOESS fits are largest if the values of company6 are small and at the same time

those of company9 are large. Therefore, we can conclude that the stock prices of company10 are

particularly high if those of company6 are low and at the same time those of company9 are high.

Analogous interpretations can be made for the lower panels.

The plots also contain the results of tests on interaction effects obtained using classical linear

regression. If the p-values of these tests are large, this can indicate that the variable pair does

not feature a true interaction effect. However, it is also possible that the interaction effect is

not detected using classical regression. For example, consider a binary variable A, a continuous

variable B, and a binary outcome: Suppose that for A = 0 all observations are of outcome class

1 and for A = 1 the observations are of outcome class 1 if B < 5 and of outcome class 2 if B ≥ 5.

This would correspond to a clear quantitative interaction effect associated with split type 6 in

Figure 1 of the main paper. However, a test for interaction effect using logistic regression would

not deliver a significant result in this situation. This artificial example illustrates that classical

parameter approaches are not always successful in interaction detection.

Supplementary Figure S3 shows the estimated bivariable influences of the two variable pairs

with the largest qualitative EIM values. The upper panels of this plot suggests that if the stock

price of company2 is low, company7 seems to have a negative influence on the stock price of

company10, but if company2 has a high stock price, company7 seems to have a positive influence

on the stock price of company10. The lower panels suggests that the qualitative interaction effect

between company1 and company7 is quite different than that between company2 and company7:

The stock price of company7 seems to have a positive influence on the stock price of company10 if

the stock price of company1 is low, but a negative influence if the stock price of company1 is high.

By default, the plot() function for interactionfor objects produces plots for the two variable

pairs with the largest quantitative and qualitative interaction forests, but using the function ar-

guments numpairsquant and numpairsqual different numbers of top variable pairs can be shown.

In our analysis of Supplementary Figure S3 we saw that both variable pairs with largest

qualitative EIM values involved company7. Looking at the ordered list of qualitative EIM values,

model$eim.qual.sorted reveals that four of the five variable pairs with largest qualitative EIM

values involve company7. Suppose we want to visualise all bivariable influence of variable pairs

that involve company7 in descending order of the qualitative EIM values. This can be realised

with the function plotEffects() using the argument allwith:

plotEffects(model, allwith="company7", type="qual", numpairs=8)

Here, type="qual" specifies that the variables pairs should be sorted according to the qualitative

EIM values in descending order. Moreover, numpairs=8 specifies that we want to visualise the

first eight of these pairs which corresponds to all possible pairs that involve company7, since there
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Fig. S2: Result of function plot.interactionfor(): Estimated bivariable influences of the two
variable pairs with the largest quantitative EIM values (’stock’ data set). The contour plots in the
left panels show two-dimensional LOESS fits. For reasons of clarity, the points in the left panels
do not show all observations, but random subsets of 300 observations. The lines in the right panels
show cross sections of the two-dimensional LOESS fits in the left panels.

are nine companies as covariate variables. Per default, only plots for the first numpairs=5 pairs

are shown. The argument allwith is particularly useful in situations in which a specific variable

(e.g., a treatment variable in medical studies) is of main interest.

The first plot produced by the above command is identical to Supplementary Figure S3 (as the

two variable pairs with largest qualitative EIM value both contained company7). The remaining

three plots are shown in Supplementary Figures S4 to S6. Only the first of these figures, Sup-

plementary Figure S4, suggests strong qualitative interaction effects. Thus, for the four variable

pairs involving company7 that featured the largest qualitative EIM values, we observed strong

qualitative interaction effects, but not for the others. This is in line with the qualitative EIM

values obtained for the variable pairs that involve company7: The largest four of these are much

larger than the remaining four, suggesting that only the largest four are associated with relevant

qualitative interaction effects.
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Fig. S3: Result of function plot.interactionfor(): Estimated bivariable influences of the two
variable pairs with the largest qualitative EIM values (’stock’ data set). The contour plots in the
left panels show two-dimensional LOESS fits. For reasons of clarity, the points in the left panels
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show cross sections of the two-dimensional LOESS fits in the left panels.

The function plotEffects() can also be used for different purposes than the one shown above.

We will use this function again in the analyses of further data sets in the next sections.

17



60

70

80

12.5 15.0 17.5 20.0 22.5 25.0
company3

co
m

pa
ny

7

35

40

45

50

55

60
company10

Est. mean of
company10

(36, 38]

(38, 40]

(40, 42]

(42, 44]

(44, 46]

(46, 48]

(48, 50]

(50, 52]

(52, 54]

(54, 56]

Test for interaction

effect using

linear regression:

p < 0.0001

40

45

50

55

65 70 75 80
company7

E
st

. m
ea

n 
of

 c
om

pa
ny

10

company3
(deciles)

15 (10 %)

15.75 (20 %)

16.5875 (30 %)

18.25 (40 %)

19.375 (50 %)

20 (60 %)

20.5375 (70 %)

21.25 (80 %)

21.8875 (90 %)

company3 AND company7

60

70

80

40 60 80
company5

co
m

pa
ny

7

40

45

50

55

60

company10

Est. mean of
company10

(36, 38]

(38, 40]

(40, 42]

(42, 44]

(44, 46]

(46, 48]

(48, 50]

(50, 52]

(52, 54]

(54, 56]

Test for interaction

effect using

linear regression:

p < 0.0001

40

45

50

55

65 70 75 80
company7

E
st

. m
ea

n 
of

 c
om

pa
ny

10

company5
(deciles)

42.5 (10 %)

47.475 (20 %)

51.375 (30 %)

56.075 (40 %)

61.75 (50 %)

63.625 (60 %)

67.9875 (70 %)

74 (80 %)

79 (90 %)

company5 AND company7

Fig. S4: Result of function plotEffects(): Estimated bivariable influences of the two variable
pairs involving company7 with the third and fourth largest qualitative EIM values (’stock’ data
set). The contour plots in the left panels show two-dimensional LOESS fits. For reasons of clarity,
the points in the left panels do not show all observations, but random subsets of 300 observations.
The lines in the right panels show cross sections of the two-dimensional LOESS fits in the left
panels.

18



20

25

60 70 80
company7

co
m

pa
ny

8

35

40

45

50

55

60
company10

Est. mean of
company10

(36, 38]

(38, 40]

(40, 42]

(42, 44]

(44, 46]

(46, 48]

(48, 50]

(50, 52]

(52, 54]

(54, 56]

(56, 58]

(58, 60]

Test for interaction

effect using

linear regression:

p < 0.0001

40

45

50

55

18 20 22 24 26 28
company8

E
st

. m
ea

n 
of

 c
om

pa
ny

10

company7
(deciles)

63.125 (10 %)

65 (20 %)

66.375 (30 %)

67.375 (40 %)

68.625 (50 %)

70 (60 %)

73.5 (70 %)

78.9 (80 %)

81.125 (90 %)

company7 AND company8

60

70

80

15 20 25 30 35
company6

co
m

pa
ny

7

35

40

45

50

55

60
company10

Est. mean of
company10

(34, 36]

(36, 38]

(38, 40]

(40, 42]

(42, 44]

(44, 46]

(46, 48]

(48, 50]

(50, 52]

(52, 54]

(54, 56]

Test for interaction

effect using

linear regression:

p < 0.0001

35

40

45

50

55

65 70 75 80
company7

E
st

. m
ea

n 
of

 c
om

pa
ny

10

company6
(deciles)

16.375 (10 %)

17.5 (20 %)

18.875 (30 %)

23.5 (40 %)

25.75 (50 %)

26.875 (60 %)

28.125 (70 %)

29.375 (80 %)

30.25 (90 %)

company6 AND company7

Fig. S5: Result of function plotEffects(): Estimated bivariable influences of the two variable
pairs involving company7 with the fifth and sixth largest qualitative EIM values (’stock’ data set).
The contour plots in the left panels show two-dimensional LOESS fits. For reasons of clarity, the
points in the left panels do not show all observations, but random subsets of 300 observations.
The lines in the right panels show cross sections of the two-dimensional LOESS fits in the left
panels.

19



35

40

45

50

60 70 80
company7

co
m

pa
ny

9

Est. mean of
company10

(40, 42]

(42, 44]

(44, 46]

(46, 48]

(48, 50]

(50, 52]

(52, 54]

(54, 56]

(56, 58]

35

40

45

50

55

60

company10

Test for interaction

effect using

linear regression:

p = 0.0211

44

48

52

35 40 45 50
company9

E
st

. m
ea

n 
of

 c
om

pa
ny

10

company7
(deciles)

63.125 (10 %)

65 (20 %)

66.375 (30 %)

67.375 (40 %)

68.625 (50 %)

70 (60 %)

73.5 (70 %)

78.9 (80 %)

81.125 (90 %)

company7 AND company9

60

70

80

40 50 60
company4

co
m

pa
ny

7

Est. mean of
company10

(38, 40]

(40, 42]

(42, 44]

(44, 46]

(46, 48]

(48, 50]

(50, 52]

(52, 54]

(54, 56]

35

40

45

50

55

60
company10

Test for interaction

effect using

linear regression:

p = 0.0018
40

45

50

55

65 70 75 80
company7

E
st

. m
ea

n 
of

 c
om

pa
ny

10

company4
(deciles)

39.375 (10 %)

40.625 (20 %)

42 (30 %)

43 (40 %)

43.9375 (50 %)

45.25 (60 %)

46.7875 (70 %)

50.125 (80 %)

55.125 (90 %)

company4 AND company7

Fig. S6: Result of function plotEffects(): Estimated bivariable influences of the two variable
pairs involving company7 with the seventh and eighth largest qualitative EIM values (’stock’ data
set). The contour plots in the left panels show two-dimensional LOESS fits. For reasons of clarity,
the points in the left panels do not show all observations, but random subsets of 300 observations.
The lines in the right panels show cross sections of the two-dimensional LOESS fits in the left
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C.2 ’zoo’ data – binary covariate variables

This data set describes 101 different biological species using 16 simple attributes, where 15 of these

are binary and one is metric (the number of legs). The outcome “mammal vs. other” is binary.

The data set was also downloaded from the open science online platform OpenML (data set ID:

965).

As a first step we again construct an interaction forest and calculate the EIM values:

set.seed(1234)

model <- interactionfor(dependent.variable.name = "type", data = datazoo)

To get a first overview we apply the function plot() to model:

plot(model)

The first plot produced by this command is shown in Supplementary Figure S7. The univariable

EIM values in this plot suggest that one of the variables has a particularly strong influence. We

can identify this variable by consulting the univariable EIM values sorted in decreasing order:

model$eim.univ.sorted[1]

milk

0.1748339

This variable indicates whether the species produces milk or not. Using this variable alone, it

would be possible to classify all species correctly, because all 41 mammals in the data set do give

milk and all 60 other species do not give milk.

The estimated bivariable influences of the two variable pairs with largest quantitative EIM

values are shown in Supplementary Figure S8. Both variable pairs seem to feature a strong

quantitative interaction effect associated with split type two in Figure 1 of the main paper. The

ordering of the two categories true and false in the plots corresponds to the ordering found

using the procedure described in Section B.3. The sub-captions of the upper and lower panels

that describe which types the quantitative interaction effects are of, also refer to this ordering.

The upper panels of Supplementary Figure S8 reveals that all species in the data set that had

both hair and a backbone, were mammals. Only two of the 41 mammals in the data set did not

have both, and these were dolphins and porpoises who do not have hair. Therefore, if we would

classify the species in the data set only by whether they have both hair and a backbone, we would

classify 99 of 101 species correctly. Only four of the species that had hair were not mammals

(these were: honey bee, housefly, moth, wasp).

All species in the data set that do not lay eggs and are not venomous are mammals (lower

panels of Supplementary Figure S8). Except for one mammal, all mammals in the data set do not

lay eggs and are not venomous. The exception was the platypus, which is not venomous, but does

lay eggs. Thus, if we would classify the species based on whether they do not lay eggs and are not

venomous at the same time, we would classify 100 of the 101 species correctly.

The estimated bivariable influences of the two pairs with the largest qualitative EIM values

are shown in Supplementary Figure S9. The observed interaction effect between the number of

legs and the presence or absence of a tail (upper panels of Supplementary Figure S9) is mostly
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Fig. S7: Result of function plot.interactionfor(): EIM values (’zoo’ data set). The values are
sorted in decreasing order.

due to species with two and four legs in this data set: While species that have a tail are much

more frequently mammals if they have four legs compared to if they have two legs, species that

do not have a tail are much more likely to be mammals if they have two legs compared to if

they have four legs. This can be explained as follows: 1) species that have a tail and two legs

are most often birds; 2) species that have a tail and four legs are most often mammals; 3) there

were only two species without a tail and two legs, which were both mammals (human and gorilla);

4) about half of the species without a tail were mammals. The observed qualitative interaction

effect between the presence or absence of a tail and the presence or absence of fins (lower panels

of Supplementary Figure S9) is due solely to one species which is a seal. The latter is registered
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Fig. S8: Result of function plot.interactionfor(): Estimated bivariable influences of the two
variable pairs with the largest quantitative EIM values (’zoo’ data set). The heat maps in the
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in the data as having fins, but no tail (the latter specification may not be correct, because sea

lions are by contrast specified as having a tail in this data set). The remaining results are clear

here: Species with fins are rarely mammals and species without fins are more often mammals if

they have a tail than if they do not.

In Supplementary Figure S7, the two largest qualitative EIM values set themselves apart very

strongly from the remaining qualitative EIM values. This suggests that, apart from the two vari-

able pairs with largest qualitative EIM values (Supplementary Figure S9), none of the remaining

variable pairs show indications of qualitative interaction effects. We check this presumption by

plotting the estimated bivariable influences of the variable pairs with the largest five qualitative

EIM values using the following command:

plotEffects(model, type="qual")

For the plots obtained for the two variable pairs with the largest qualitative EIM values see
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Fig. S9: Result of function plot.interactionfor(): Estimated bivariable influences of the two
variable pairs with the largest qualitative EIM values (’zoo’ data set). The heat maps in the upper
left panel and the lines in the upper right panel show (one-dimensional) LOESS fits. The outcome
was coded as ’1’ for ’mammal’ and ’0’ for ’other’ when performing the LOESS regression. The
heat maps in the lower-left panels and the dots in the lower-right panels show the frequencies of
mammals in the respective combinations of the categories.

Supplementary Figure S9. The plots obtained for the variables pairs with third to fifth largest

qualitative EIM values are shown in Supplementary Figures S10 and S11. The latter two plots

do not suggest qualitative interaction effects for the respective variable pairs, which confirms our

presumption that only the two variable pairs with largest qualitative EIM values show indications

of qualitative interaction effects.

As a last step of the analysis, we want to study the bivariable influence of the presence or

absence of teeth and the presence or absence of feathers. Plotting the estimated bivariable influence

of a specific pair of choice can be performed using the function plotPair() (also possible with

the function plotEffects() using the argument pairs):

plotPair(pair=c("toothed", "feathers"), yvarname="type", data=datazoo)

Note that this function does not require an interactionfor object and therefore can be used
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Fig. S10: Result of function plotEffects(): Estimated bivariable influences of the two variable
pairs with the third and fourth largest qualitative EIM values (’zoo’ data set). The heat map
in the upper left panel and the lines in the upper right panel show (one-dimensional) LOESS
fits. The outcome was coded as ’1’ for ’mammal’ and ’0’ for ’other’ when performing the LOESS
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frequencies of mammals in the respective combinations of the categories.

without constructing an interaction forest beforehand. The resulting plot is shown in Supplemen-

tary Figure S12. There are no species in the data set that both have teeth and feathers. None of

the species in the data set that have feathers is a mammal (these are all birds). Only one of the

species that has neither feathers nor teeth is a mammal, which is the platypus. Most of the teethed

species that do not have feathers are mammals. The other teethed species without feathers are

mostly fish.
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C.3 ’white-clover’ data – small sample size

The objective of these data was to predict the persistence of 63 white clover populations in summer

dry hill land in 1994 using 31 variables that quantify the amount of white clover and other species

in the years 1991 to 1994 and provide information on the strata where the white clover was being

grown. These data were again downloaded from OpenML (data set ID: 1009). The binary outcome

“[0, 8.82[ vs. [8.82, 35.29]” quantifies the amount of white clover in the populations in 1994.

Note that there are 31 covariate variables in this data set, but only 63 observations. In the

simulation study shown in Section 4.2 of the main paper, in the case of the smallest considered

sample size n = 100, interaction forests were able to identify only strong qualitative interactions.

Weaker qualitative interactions and quantitative interactions were not identifiable in this setting.

The analysis presented in this section will, however, illustrate that also for small data sets it is

possible to identify both qualitative and quantitative interaction effects using interaction forests.

As in the previous subsections, in the first step we construct the interaction forest and calculate

the EIM values:

set.seed(1234)

model <- interactionfor(dependent.variable.name = "amount", data = dataclover)

Second, we obtain a first overview using the plot() function:

plot(model)

The resulting plots are shown in Supplementary Figures S13 to S15. None of the variables seem

to have a particularly strong (univariable) influence (upper panel of Supplementary Figure S13).

Analogous statements can be made with respect to the quantitative and qualitative interaction

effects.

Both variable pairs with largest quantitative EIM values (Supplementary Figure S14) feature

the variable strata, which is a variable with many unordered categories. The categories of strata

are again ordered using the procedure described in Section B.3 in the figures. As seen in Sup-

plementary Figure S14, observed quantitative and qualitative interaction effects determined with

interaction forests that involve unordered categorical variables with many categories can be diffi-

cult to interpret. Nevertheless, someone with profound knowledge on the studied subject matter

may be able to make meaningful interpretations here.

The estimated bivariable influences of both variable pairs with largest qualitative EIM values

(Supplementary Figure S15) suggest qualitative interaction effects. However, given the small

sample size, the observed relations should not be overinterpreted.

It is strongly advisable to investigate also variable pairs with smaller quantitative and qualita-

tive EIM values for interaction effects beyond the two variable pairs with largest quantitative and

qualitative EIM values that are considered by default in the plot() function. As we saw already in

the previous subsections, the function plotEffects() can be used for this purpose. When apply-

ing plotEffects() without specifying any further function arguments than the interactionfor

object, the bivariable influences of the variable pairs with the five largest quantitative EIM values

are visualised:

plotEffects(model)
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Fig. S13: Result of function plot.interactionfor(): EIM values (’white-clover’ data set). The
values are sorted in decreasing order.

We already investigated the variable pairs with the two largest quantitative EIM values in Supple-

mentary Figure S14. The estimated bivariable influences of the variable pairs with third to fifth

largest quantitative EIM values are visualised in Supplementary Figures S16 and S17. The variable

pairs in Supplementary Figure S16 again involve the variable strata that has many categories,

which is why these results are difficult to interpret. The variable pair with fifth largest quanti-

tative EIM value involves two continuous variables (Supplementary Figure S17). The estimated

bivariable influence of this variable pair is clearly associated with a quantitative interaction effect:

If both Cocksfoot.93 and OtherGrasses.94 are small, the predicted amount of white clover is

large, but not if only one of them is small or both of them are large.
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Fig. S14: Result of function plot.interactionfor(): Estimated bivariable influences of the two
variable pairs with the largest quantitative EIM values (’white-clover’ data set).The heat maps in
the left panels and the lines in the right panels show (one-dimensional) LOESS fits. The outcome
was coded as ’1’ for ’[0, 8.82[’ and ’0’ for ’[8.82, 35.29]’ when performing the LOESS regression.

Next, we visualise the estimated bivariable influences of the five variable pairs with the largest

qualitative EIM values using the following command:

plotEffects(model, type="qual")

The variable pair with the third largest qualitative EIM value involves the multi-categorical vari-

able strata and the corresponding heat map, in the upper-left panel of Supplementary Figure S18,

does not suggest a qualitative interaction effect. While the estimated bivariable influence of plot

and Weeds.94 visualised in the lower panels of the figure also does not suggest an interaction effect

of qualitative type, the two variables do seem to interact: The estimated influence of Weeds.94

is quite different for plot="tahora" or plot="prop" than for plot="hula". The estimated bi-

variable influence of the variable pair with fifth largest qualitative EIM value (Supplementary

Figure S19), however, does suggest a qualitative interaction effect. Again, all these results must

be interpreted cautiously, on account of the small sample size.
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Fig. S15: Result of function plot.interactionfor(): Estimated bivariable influences of the two
variable pairs with the largest qualitative EIM values (’white-clover’ data set). The contour plots
in the left panels show two-dimensional LOESS fits. The lines in the right panels show cross-
sections of the two-dimensional LOESS fits in the left panels. The outcome was coded as ’1’ for
’[0, 8.82[’ and ’0’ for ’[8.82, 35.29]’ when performing the LOESS regression.
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Fig. S16: Result of function plotEffects(): Estimated bivariable influences of the two variable
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Fig. S17: Result of function plotEffects(): Estimated bivariable influence of the variable pair
with the fifth largest quantitative EIM value (’white-clover’ data set). The contour plot in the left
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Fig. S18: Result of function plotEffects(): Estimated bivariable influences of the two variable
pairs with the third and fourth largest qualitative EIM values (’white-clover’ data set). The heat
maps in the left panels and the lines in the right panels show (one-dimensional) LOESS fits. The
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Fig. S19: Result of function plotEffects(): Estimated bivariable influence of the variable pair
with the fifth largest qualitative EIM value (’white-clover’ data set). The contour plot in the left
panel shows a two-dimensional LOESS fit. The lines in the right panels show cross-sections of the
two-dimensional LOESS fit in the left panel. The outcome was coded as ’1’ for ’[0, 8.82[’ and ’0’
for ’[8.82, 35.29]’ when performing the LOESS regression.
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C.4 ’colon-rna’ data – high-dimensional data, survival and binary

outcome

This data set features 22210 RNA measurements in 350 patients suffering from colon adenocar-

cinoma. These data were originally downloaded from the database The Cancer Genome Atlas

Project (TCGA) (Ley et al., 2013). We used these data previously in Hornung and Wright (2019).

Two outcomes were considered: 1) survival (273 (78%) of the 350 patients had censored survival

times); 2) the presence or absence of the TP53 mutation as a surrogate for a clinically meaningful

binary outcome.

We first consider the survival outcome. Here, in contrast to the previous subsections,

we do not only have to specify the function argument dependent.variable.name, but also

status.variable.name, where the latter has to be set to the name of the survival status variable

“status”:

set.seed(1234)

modelsurv <- interactionfor(dependent.variable.name = "time",

status.variable.name = "status", data = datarnasurv)

In principle, it is also possible to use the formula interface with interaction forests (i.e., here:

formula = Surv(time, status) ~ .). However, for high-dimensional data the formula interface

can lead to problems in R (stack overflows).

After having constructed the interaction forest, we first apply the plot() function:

plot(model)

The results are shown in Supplementary Figures S20 to S22.

When interpreting the univariable EIM values, it is important to consider that the univariable

EIM values of all those variables that did not occur in any of the 5000 pre-selected variable pairs

are set to zero in the interaction forest algorithm (cf. Section 3.3 of the main paper). Therefore,

variables that have a strong influence on prediction can only be among the variables with the largest

univariable EIM values if they were involved in the pre-selected pairs. Another issue associated

with univariable EIM values for higher dimensional data is that variables that are featured in

a larger number of pre-selected variable pairs can receive too large univariable EIM values; for

details see Section 3.3 of the main paper. We will illustrate these issues in the analysis of the

binary outcome “TP53 yes vs. TP53 no” shown further below. Note that these issues with the

univariable EIM values exist only for higher dimensional data, because for data with at most 100

variables, all possible variable pairs are considered for splitting. However, if the interest lies in

measuring the univariable importance of the variables for prediction in high-dimensional data, a

conventional random forest should be used and an interaction forest only for ranking the variable

pairs with respect to the strengths of their interaction effects.

Two of the variable pairs have distinctively higher qualitative EIM values than the remaining

variable pairs (lower panel of Supplementary Figure S20).

The variable pair with the largest quantitative EIM value is not associated with a clear quanti-

tative interaction effect (upper panel of Supplementary Figure S21). Nevertheless, there are some

indications of a quantitative interaction effect, as patients with long survival times (i.e., those asso-

ciated with bright points) are not contained in the upper left region of the heat map. This might
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Fig. S20: Result of function plot.interactionfor(): EIM values (’colon-rna’ data set, survival
outcome). The values are sorted in decreasing order.

indicate that patients with small ENSG00000125970 measurements, but high ENSG00000229320

measurements are unlikely to live long. For the variable pair with second-largest quantitative

EIM value (lower panel of Supplementary Figure S21), there are stronger indications of a quan-

titative interaction effect: For patients with large ENSG00000214290 measurements the influence

of ENSG00000215447 on the risk seems to be considerably stronger than for patients with small

ENSG00000214290 measurements. Nevertheless, the test for interaction effect using classical Cox

regression was not significant for both variable pairs (with “significant” we mean p < 0.05).

The estimated bivariable influences of the two variable pairs with the largest qualitative EIM

values are shown in Supplementary Figure S22. The first of these variable pairs shows clear indica-
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Pairs with top quantitative EIM values

Fig. S21: Result of function plot.interactionfor(): Estimated bivariable influences of the two
variable pairs with the largest quantitative EIM values (’colon-rna’ data set, survival outcome).
The contour plots in the left panels show two-dimensional LOESS fits of the log hazards ratio
in relation to the median effect, where these LOESS fits were obtained using a Cox proportional
hazard additive model. The colored points show the uncensored observations only. The lines in
the right panels show cross-sections of the two-dimensional LOESS fits in the left panels.

tions of a qualitative interaction effect: ENSG00000174516 seems to have a negative influence on the

risk for small ENSG00000133640 measurements, but a positive influence for large ENSG00000133640

measurements. For the second variable pair (lower panel of Supplementary Figure S22), there are

also indications of a qualitative interaction effect, albeit less strong, as in the case of the first vari-

able pair: For small ENSG00000134318 measurements, ENSG00000171827 seems to have a positive

influence on the risk and for large ENSG00000134318 measurements, ENSG00000171827 seems to

have a slightly negative influence on the risk. The test for interaction effect using classical Cox

regression was significant in both cases.

Again, we also study variable pairs with smaller quantitative and qualitative EIM values than

the ones above:

plotEffects(modelsurv)
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Fig. S22: Result of function plot.interactionfor(): Estimated bivariable influences of the two
variable pairs with the largest qualitative EIM values (’colon-rna’ data set, survival outcome).
The contour plots in the left panels show two-dimensional LOESS fits of the log hazards ratio
in relation to the median effect, where these LOESS fits were obtained using a Cox proportional
hazard additive model. The colored points show the uncensored observations only. The lines in
the right panels show cross-sections of the two-dimensional LOESS fits in the left panels.

plotEffects(modelsurv, type="qual")

We have already looked at the variable pairs with the two largest quantitative EIM values and

those with the two largest qualitative EIM values. The remaining plots resulting from the above

commands are shown in Supplementary Figures S23 to S26. While the estimated bivariable influ-

ences of the variable pairs with third and fourth largest quantitative EIM values (Supplementary

Figure S23) do show some indications of quantitative interaction effects, no such effect can be

seen in the case of the variable pair with the fifth largest quantitative EIM value (Supplementary

Figure S24). The test for interaction effect using classical Cox regression was not significant in

all three cases. The plots for the variable pairs with third and fifth largest qualitative EIM val-
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ues (upper panel of Supplementary Figure S25 and Supplementary Figure S26, respectively) both

show indications of qualitative interaction effects. In addition, the p-values from Cox regression

are small here. The plot for the variable pair with the fourth largest qualitative EIM value (lower

panel of Supplementary Figure S25) does not show clear indications of a qualitative interaction

effect and the result of Cox regression is not significant here.

In practice, it would likely make sense to study even more pairs with large quantitative and

qualitative EIM values to avoid failing to identify important effects.
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Fig. S23: Result of function plot.interactionfor(): Estimated bivariable influences of the two
variable pairs with the third and fourth largest quantitative EIM values (’colon-rna’ data set,
survival outcome). The contour plots in the left panels show two-dimensional LOESS fits of the
log hazards ratio in relation to the median effect, where these LOESS fits were obtained using a
Cox proportional hazard additive model. The colored points show the uncensored observations
only. The lines in the right panels show cross-sections of the two-dimensional LOESS fits in the
left panels.

The estimated bivariable influences of the five variable pairs with the largest quantitative EIM

values did not suggest strong quantitative interaction effects (in particular, the tests for interaction

using classical Cox regression were not significant). It was not clear whether the quantitative EIM

values failed in detecting stronger quantitative interaction effects of the types considered with
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Fig. S24: Result of function plot.interactionfor(): Estimated bivariable influence of the two
variable pair with the fifth largest quantitative EIM values (’colon-rna’ data set, survival outcome).
The contour plot in the left panel shows a two-dimensional LOESS fit of the log hazards ratio in
relation to the median effect, where this LOESS fit was obtained using a Cox proportional hazard
additive model. The colored points show the uncensored observations only. The lines in the right
panel show cross-sections of the two-dimensional LOESS fits in the left panel.

interaction forests, or if there are simply no indications of variable pairs with stronger effects of

these types. To investigate this issue, we looked at the estimated bivariable influences of various

variable pairs with quantitative EIM values ranking much worse. Here, we saw much less indication

of quantitative interaction effects, and in particular, the estimates of the log hazard ratio varied

much less in the plots compared to in the cases of the variable pairs with top quantitative EIM

values. As an example, in Supplementary Figure S27, we show the estimated bivariable influences

of the variable pairs with the 100th and 2500th largest quantitative EIM values. These plots can

be obtained using the following command:

plotEffects(modelsurv, indpairs=c(100, 2500))

For both variable pairs, there are no notable indications of quantitative interaction effects. More-

over, the ranges of the estimated log hazard ratios compared to the median effect are much smaller

than for the five variable pairs with top quantitative EIM values (Supplementary Figures S21, S23,

and S24). This suggests that the importance for prediction is smaller for these two variable pairs

with worse ranking quantitative EIM values than for the variable pairs with top-ranking quanti-

tative EIM values.
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ENSG00000204334 AND ENSG00000233913

Fig. S25: Result of function plot.interactionfor(): Estimated bivariable influences of the
two variable pairs with the third and fourth largest qualitative EIM values (’colon-rna’ data set,
survival outcome). The contour plots in the left panels show two-dimensional LOESS fits of the
log hazards ratio in relation to the median effect, where these LOESS fits were obtained using a
Cox proportional hazard additive model. The colored points show the uncensored observations
only. The lines in the right panels show cross-sections of the two-dimensional LOESS fits in the
left panels.
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Fig. S26: Result of function plot.interactionfor(): Estimated bivariable influence of the vari-
able pair with the fifth largest qualitative EIM values (’colon-rna’ data set, survival outcome).
The contour plot in the left panel shows a two-dimensional LOESS fit of the log hazards ratio in
relation to the median effect, where this LOESS fit was obtained using a Cox proportional hazard
additive model. The colored points show the uncensored observations only. The lines in the right
panel show cross-sections of the two-dimensional LOESS fits in the left panel.
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Fig. S27: Result of function plot.interactionfor(): Estimated bivariable influences of the two
variable pairs with the 100th and 2500th largest quantitative EIM values (’colon-rna’ data set,
survival outcome). The contour plots in the left panels show two-dimensional LOESS fits of the
log hazards ratio in relation to the median effect, where these LOESS fits were obtained using a
Cox proportional hazard additive model. The colored points show the uncensored observations
only. The lines in the right panels show cross-sections of the two-dimensional LOESS fits in the
left panels.
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Now we consider the binary outcome “TP53 yes vs. TP53 no”, again using the 22210 RNA

measurements as covariate variables:

set.seed(1234)

modeltp53 <- interactionfor(dependent.variable.name = "TP53", data = datatp53)

Next we apply the function plot():

plot(modeltp53)

Two of the variables have much larger univariable EIM values than all other variables (upper panel

of Supplementary Figure S28). These are ENSG00000174307 and ENSG00000087088:

head(modeltp53$eim.univ.sorted)

ENSG00000174307 ENSG00000087088 ENSG00000135679 ENSG00000253878 ENSG00000251095

0.0050254717 0.0044273585 0.0008707547 0.0007452830 0.0005306604

ENSG00000249825

0.0004778302

As already mentioned when describing the results obtained for the survival outcome, one issue of

the univariable EIM values in the case of high-dimensional data is that variables that are featured

often in the pre-selected pairs are assigned too large univariable EIM values. This issue seems to be

the case for the two variables with the largest univariable EIM values: ENSG00000174307 was fea-

tured the second most frequently in the pre-selected variable pairs (63 times) and ENSG00000087088

the fourth most frequently (36 times). We computed the classical permutation variable impor-

tance values of conventional random forests (using the R package ranger and 20000 trees) for

comparison. Here, ENSG00000174307 had the 27th largest permutation VIM value among all vari-

ables, and ENSG00000087088 had the 11th largest permutation VIM value. Thus, these variables

seem important, but not as important as the univariable EIM values would suggest. The vari-

able, ENSG00000135679, that had the third largest univariable EIM value had the second largest

permutation VIM value. A second issue for high-dimensional data also mentioned above is that

the univariable EIM values miss important variables if these are not featured in the pre-selected

pairs. Three of the ten variables with largest permutation VIM values were not featured in the

pre-selected pairs and thus received an univariable EIM value of zero. Given the above issues, we

again strongly recommend that, if it is of interest to measure the univariable importance of the

variables for high-dimensional data sets, a conventional random forest should be constructed for

this purpose in addition to the interaction forest used for ranking the interaction effects.

The estimated bivariable influences of both variable pairs with largest quantitative EIM values

(Supplementary Figure S29) clearly suggest a quantitative interaction effect: For the first variable

pair there is a high concentration of observations with TP53 mutation in the lower-right corner of

the heat map and for the second variable pair observations without TP53 mutation prevail in the

upper-right corner of the corresponding heat map.

While the variable pair with largest qualitative EIM value seems to be associated with a

comparably weak qualitative interaction effect, the picture is clearer in the case of the variable

pair with second-largest qualitative EIM value (Supplementary Figure S30).

We investigate variable pairs with smaller quantitative and qualitative EIM values using the

commands:
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Fig. S28: Result of function plot.interactionfor(): EIM values (’colon-rna’ data set, binary
outcome ’TP53’). The values are sorted in decreasing order.

plotEffects(modeltp53)

plotEffects(modeltp53, type="qual")

The plots for the variable pairs with third to fifth largest quantitative EIM values all suggest

quantitative interaction effects (Supplementary Figures S31 and S32).

However, in the case of the plots for the qualitative EIM values (Supplementary Figures S33

and S34), only the plot of the variable pair with fifth largest qualitative EIM value suggests

a qualitative interaction effect. To see whether there are more variable pairs with qualitative

interaction effects among those with large qualitative EIM values, we also investigated the pairs

with sixth to fifteenth largest qualitative EIM values. Here, we found more variable pairs that
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Pairs with top quantitative EIM values

Fig. S29: Result of function plot.interactionfor(): Estimated bivariable influences of the
two variable pairs with the largest quantitative EIM values (’colon-rna’ data set, binary outcome
’TP53’). The contour plots in the left panels show two-dimensional LOESS fits. The lines in the
right panels show cross-sections of the two-dimensional LOESS fits in the left panels. The outcome
was coded as ’1’ for ’Yes’ and ’0’ for ’No’ when performing the LOESS regression.

showed clear indications of qualitative interaction effects. The clearest indications were seen for

variable pairs numbers 7, 9, 10, and 11, the estimated bivariable influence of which we visualise

using:

plotEffects(modeltp53, type="qual", indpairs=c(7,9,10,11))

The resulting plots are shown in Supplementary Figure S35 and S36. These results illustrate that

it can be worthwhile to also investigate variable pairs beyond those with largest quantitative or

qualitative EIM values.
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Fig. S30: Result of function plot.interactionfor(): Estimated bivariable influences of the
two variable pairs with the largest quantitative EIM values (’colon-rna’ data set, binary outcome
’TP53’). The contour plots in the left panels show two-dimensional LOESS fits. The lines in the
right panels show cross-sections of the two-dimensional LOESS fits in the left panels. The outcome
was coded as ’1’ for ’Yes’ and ’0’ for ’No’ when performing the LOESS regression.
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Fig. S31: Result of function plotEffects(): Estimated bivariable influences of the two variable
pairs with the third and fourth largest quantitative EIM values (’colon-rna’ data set, binary
outcome ’TP53’). The contour plots in the left panels show two-dimensional LOESS fits. The
lines in the right panels show cross-sections of the two-dimensional LOESS fits in the left panels.
The outcome was coded as ’1’ for ’Yes’ and ’0’ for ’No’ when performing the LOESS regression.
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Fig. S32: Result of function plotEffects(): Estimated bivariable influences of the variable pair
with the fifth largest quantitative EIM value (’colon-rna’ data set, binary outcome ’TP53’). The
contour plot in the left panel shows a two-dimensional LOESS fit. The lines in the right panel
show cross-sections of the two-dimensional LOESS fit in the left panel. The outcome was coded
as ’1’ for ’Yes’ and ’0’ for ’No’ when performing the LOESS regression.
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Fig. S33: Result of function plotEffects(): Estimated bivariable influences of the two variable
pairs with the third and fourth largest qualitative EIM values (’colon-rna’ data set, binary outcome
’TP53’). The contour plots in the left panels show two-dimensional LOESS fits. The lines in the
right panels show cross-sections of the two-dimensional LOESS fits in the left panels. The outcome
was coded as ’1’ for ’Yes’ and ’0’ for ’No’ when performing the LOESS regression.
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ENSG00000203362 AND ENSG00000221843

Fig. S34: Result of function plotEffects(): Estimated bivariable influences of the variable pair
with the fifth largest qualitative EIM value (’colon-rna’ data set, binary outcome ’TP53’). The
contour plot in the left panel shows a two-dimensional LOESS fit. The lines in the right panel
show cross-sections of the two-dimensional LOESS fit in the left panel. The outcome was coded
as ’1’ for ’Yes’ and ’0’ for ’No’ when performing the LOESS regression.
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Fig. S35: Result of function plotEffects(): Estimated bivariable influences of the two variable
pairs with the seventh and ninth largest qualitative EIM values (’colon-rna’ data set, binary
outcome ’TP53’). The contour plots in the left panels show two-dimensional LOESS fits. The
lines in the right panels show cross-sections of the two-dimensional LOESS fits in the left panels.
The outcome was coded as ’1’ for ’Yes’ and ’0’ for ’No’ when performing the LOESS regression.
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Fig. S36: Result of function plotEffects(): Estimated bivariable influences of the two variable
pairs with the tenth and eleventh largest qualitative EIM values (’colon-rna’ data set, binary
outcome ’TP53’). The contour plots in the left panels show two-dimensional LOESS fits. The
lines in the right panels show cross-sections of the two-dimensional LOESS fits in the left panels.
The outcome was coded as ’1’ for ’Yes’ and ’0’ for ’No’ when performing the LOESS regression.
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D Real data study: Further details and results

D.1 Further details on the study design

For both RF and IF, we used the option probability=TRUE, which obtains class probability

estimates by averaging across the class frequencies in the leaf nodes of the trees in the prediction.

Class point predictions were obtained from the class probability estimates using the cutoff 0.5 (i.e.,

the more likely class was chosen). The R package ccf (version 0.1.0) implementing CaF does not

feature an option for obtaining class probability estimates. Here, we simply used the proportions

of the trees predicting either class as class probability estimates.

When applying the R implementations of CoF, ObF, and RoF to the 220 data sets in the

comparison, the computations stopped with errors for some data sets. We were able to fix the

great majority of these issues by performing respective changes in the R codes underlying the R

packages implementing these methods. For details, see Supplementary Material 2 accompanying

the paper, where all R codes used to obtain the results shown in the paper are available. After

fixing issues in the R implementations of CaF, ObF, and RoF, four of the 5500 applications of the

stratified cross-validation still resulted in errors: There were three errors in the case of ObF and

one error in the case of CaF. All three concerned data sets were strongly imbalanced. Because

of these four errors, both for CaF and ObF, there was one data set for which results were not

available for one of the five repetitions of the cross-validation. For ObF there was one data set in

addition for which results were not available for two of the five repetitions. When calculating the

averages across the five repetitions of the cross-validation for each combination of data set and

method, we simply ignored these few missing results.

D.2 Dependencies of the ranks the methods achieved with respect to

the different metrics on the numbers of variables and the sample

sizes

The dependencies of the ranks of the methods with respect to the ACC on the number of variables

in the data sets are visualised in Supplementary Figure S37. The corresponding results with

respect to the AUC and the Brier are shown in Supplementary Figures S38 and S39. Following

Couronné et al. (2018), we will focus on the ACC. The results obtained for the AUC and the

Brier will be compared to those obtained for the ACC. The ranks of IF and RF hardly seem to be

influenced by the number of variables in Supplementary Figure S37. As described in Section 4.1.3

of the main paper, CaF achieved the best rank frequently for data sets with small numbers of

variables. However, CaF was also often among the worst methods for such data sets. As a result,

CaF achieved only slightly better mean ranks for data sets with small numbers of variables. ObF

achieved remarkably better ranks for data sets with large numbers of variables, for which the

mean performance of ObF was comparable to that of IF and slightly better than that of RF.

Interestingly, RoF achieved better ranks for very small numbers of variables. We did not observe

this for the AUC (Supplementary Figure S38). Apart from the latter observation, the dependency

structures observed for the AUC and the Brier are quite consistent with that observed for the

ACC. For the Brier, the mean ranks of IF were slightly better for data sets with small numbers of

variables. However, the confidence intervals are very broad for large number of variables, which
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is why this result should not be overinterpreted.
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Fig. S37: Dependencies of the method ranks with respect to the ACC on the numbers of variables
in the data sets. The black dots show the ranks the methods achieved for the individual data sets.
We added random noise to the ranks to make it possible to discern tuples of points at the same
positions. The blue lines show LOESS fits and the gray bands 95% pointwise confidence intervals.
The x-axes are shown on log scale.

In general, the dependencies of the mean ranks of the methods on the sample size seem to

be weak (Supplementary Figures S40, S41, and S42). A notable exception for each performance

metric was that the ranks of RoF were considerably worse for very large sample sizes, where this

method almost always took the last place for the studied data sets. This suggests that RoF is

less capable of exploiting large sample sizes than the other compared methods. For the AUC, IF

achieved slightly better mean ranks for large sample sizes.
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Fig. S38: Dependencies of the method ranks with respect to the AUC on the numbers of variables
in the data sets. The black dots show the ranks the methods achieved for the individual data
sets. We added random noise to the ranks to make it possible to discern tuples of points at the
same positions. The blue lines show LOESS fits, and the gray bands 95% pointwise confidence
intervals. The x-axes are shown on log scale.
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Fig. S39: Dependencies of the method ranks with respect to the Brier on the numbers of variables
in the data sets. The black dots show the ranks the methods achieved for the individual data
sets. We added random noise to the ranks to make it possible to discern tuples of points at the
same positions. The blue lines show LOESS fits, and the gray bands 95% pointwise confidence
intervals. The x-axes are shown on log scale.

56



ObF RoF

IF RF CaF

50 100 200 400 800 1500 3000 6000 12000 50 100 200 400 800 1500 3000 6000 12000

50 100 200 400 800 1500 3000 6000 12000

1

2

3

4

5

1

2

3

4

5

Sample size

R
an

k

Fig. S40: Dependencies of the method ranks with respect to the ACC on the sample sizes. The
black dots show the ranks the methods achieved for the individual data sets. The blue lines show
LOESS fits, and the gray bands 95% pointwise confidence intervals. The x-axes are shown on log
scale.
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Fig. S41: Dependencies of the method ranks with respect to the AUC on the sample sizes. The
black dots show the ranks the methods achieved for the individual data sets. The blue lines show
LOESS fits, and the gray bands 95% pointwise confidence intervals. The x-axes are shown on log
scale.
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Fig. S42: Dependencies of the method ranks with respect to the Brier on the sample sizes. The
black dots show the ranks the methods achieved for the individual data sets. The blue lines show
LOESS fits, and the gray bands 95% pointwise confidence intervals. The x-axes are shown on log
scale.
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E Simulation study: Further details on the study design

and the simulation setting

E.1 Further details on the study design

As described in Section 4.2.1 of the main paper, in the cases of iRF and – in particular – PA it

was not feasible computationally to use 20000 trees per forest for the largest considered sample

size (n = 1000). A single simulation iteration did not finish in 40 hours when using 20000 trees in

the case of the largest sample size. Therefore, for data sets with n = 1000, we used the numbers of

trees 1000 and 500 for PA and iRF, respectively, which correspond to the default values in the R

packages randomForestSRC (version 2.9.3) and iRF (version 2.0.0) implementing these approaches.

While EIM, PA, and IMDMS return interaction importance scores for each pair of variables,

iRF returns comparably short lists of tuples that are candidates for tuples featuring high-order

interactions. Therefore, the results obtained using iRF are not directly comparable to those

obtained using EIM, PA, and IMDMS. Be S the list of the tuples identified by iRF sorted according

to the stability score in decreasing order. We defined the rank attributed to a variable pair using

iRF as the index of the first tuple in S that contained both members of the variable pair. If the list

of identified tuples did not contain tuples that featured both variables at all, we simply set the rank

of the interacting pair that is attributed by iRF to missing and skip the corresponding simulation

iteration when evaluating the results for iRF. Note that iRF is clearly given an advantage here:

First, the lists of tuples identified by iRF are much shorter than the lists of all possible variable

pairs, which is why the ranks obtained using iRF tend to be much lower. Second, for many

of the simulation iterations the resulting lists of tuples identified by iRF do not contain tuples

that contain both variables of interest. In these cases, iRF clearly did not identify the respective

variable pair as an interacting pair, which is why just leaving these simulation iterations out gives

iRF an advantage. Third, many of the tuples containing both variables of interest also contain

other variables. In these cases, the order of the interaction effect attributed by iRF is higher

than that of the actual interaction effect, which is only two. Nevertheless, as also described in

Section 4.2.1 of the main paper, we decided to follow this overoptimistic procedure of attributing

ranks using iRF, because we wanted to avoid putting iRF at a disadvantage. Our goal was to

study, whether IF tends to outperform the competing approaches or not. If IF would still perform

better than iRF, even if the latter is put at an advantage, we would have more certainty that IF

truly performs better than iRF in the investigated context.
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E.2 Exemplary pairs of variables in a simulated data set
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Fig. S43: Exemplary pairs of variables in a simulated data set (sample size: 500). Each point
corresponds to an observation in the data set. The two colors distinguish the two outcome classes.
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E.3 Detailed description of the simulation setting

For each simulated data set the first n/2 observations are from the first class and the second n/2

observations are from the second class. The distributions from which the values of the informative

variables were drawn differ between the two classes.

The values of the uniformative variables X19, . . . , X68 were drawn from the standard normal

distribution N (0, 1).

The values of the variables X1, . . . , X6 with only main effects, but no interaction effects were

drawn from N (0, 1) for observations from the first class and from N (d, 1) for observations from the

second class, where d = 1 for variables with strong effects, d = 0.75 for variables with moderate

effects, and d = 0.5 for variables with weak effects (compare also Janitza et al. (2013)).

Be V the covariate space spanned by two continuous variables X∗1 and X∗2 , where X∗1 is on

the x-axis and X∗2 is on the y-axis. In the following, when referring to V , the variable named first

corresponds to X∗1 and the variable name second corresponds to X∗2 . The values of the variable

pairs with qualitative interactions {X13, X14}, {X15, X16}, {X17, X18} were drawn in such a way

that the values from one class concentrate in the lower-left and upper-right corner of V and

the values from the other class concentrate in the upper-left and lower-right corner of V . More

precisely, the values of the variable pairs were drawn from the following mixtures of multivariate

normal distributions:

For {X15, X16} the values in the first class and for {X13, X14} and {X17, X18} the values in the

second class were drawn from the following distribution:

1

2
· N

[(
0

0

)
,

(
1 0

0 1

)]
+

1

2
· N

[(
a

a

)
,

(
1 0

0 1

)]
(1)

For {X15, X16} the values in the second class and for {X13, X14} and {X17, X18} the values in the

first class were drawn from the following distribution:

1

2
· N

[(
a

0

)
,

(
1 0

0 1

)]
+

1

2
· N

[(
0

a

)
,

(
1 0

0 1

)]
(2)

As will be described in the following, the values of the parameter a for strong, moderate, and weak

qualitative interaction effects were specified in such a way that the resulting variables featured a

comparable predictive power as the variables with only main effects of the same effect strength

levels. In a general context, the predictive importance of a variable is not only determined by how

decisive the variable is on its own, but also by how predictive the variable is in conjunction with

other variables. For example, two predictive variables, when considered together, may deliver

a very accurate prediction rule, but when considered separately the two variables may not be

nearly as predictive. Thus, the predictive importance of one of these variables depends on the

presence of the other variable. If we want to measure the predictive importance of a variable,

it is necessary to study how important this variable is in conjunction with other variables in the

mean. The predictive importance of two variables can be measured in terms of the similarity

or dissimilarity of the joint distributions of these variables in the two classes. The more similar

these joint distributions are between the two classes, the less predictive power is featured in these

variables. The similarity between two probability density functions fA(x) and fB(x) can be
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measured using the overlapping index (Pastore and Calcagǹı, 2019):
∫

min[fA(x), fB(x)]dx ∈
[0, 1]. We used this overlapping index for making the predictive powers of the variables with

qualitative interaction effects comparable to that of the variables with only main effects of the

same effect strength levels. This is realized by choosing values for parameter a that lead to degrees

of overlap between the joint distributions of the interacting variables in the two classes that are

comparable to the corresponding overlaps for pairs of variables for which one or both of them have

a univariable effect. Denote θ ∈ {strong,moderate, weak} the effect strength, {Xθ,q,1, Xθ,q,2}
a variable pair with qualitative interaction effect of strength θ, Xθ,u a variable with univariable

effect of strength θ, Xθ,Un\u,1, . . . , Xθ,Un\u,5 all variables with univariable effect with the exception

of Xθ,u, and Xθ,No,1, . . . , Xθ,No,50 all variables without effect (i.e., the variables X19, . . . , X68 in

Table 2 of the main paper). Moreover, let O(Xj1 , Xj2) denote the overlapping index between the

joint distributions of a variable pair {Xj1 , Xj2} in the two classes. Then for each effect strength

level θ ∈ {strong,moderate, weak}, the parameter a in formulas (1) and (2) was fixed to the

value for which the following equation holds: O(Xθ,q,1, Xθ,q,2) = 1
55

∑
Xj∈S·\u O(Xθ,u, Xj), where

S·\u = {Xθ,Un\u,1, . . . , Xθ,Un\u,5, Xθ,No,1, . . . , Xθ,No,50}. The reason why we did not include the

variables that feature interaction effects, X7, . . . , X18, in these averages was simplicity: If we had

included these variables, the parameter controlling the overlapping index for pairs of variables

with quantitative interactions (see below) would have depended on the value of a and vice versa.

This would have made it difficult to find the correct values of these parameters. We calculated

each overlapping index value numerically with an exactness of three decimal places. The following

a values resulted for strong, moderate, and weak effects: 1.772, 1.51, and 1.225.

The values of the variable pairs with quantitative interactions {X7, X8}, {X9, X10}, {X11, X12}
were drawn in such a way that the values from the second class concentrate in one corner of V and

the values of the first class are distributed across the remaining three corners of V . For {X7, X8}
the values of the second class concentrate in the lower-right corner, for {X9, X10} in the upper-

right corner, and for {X11, X12} in the upper-left corner. Below we will demonstrate how the

values of {X7, X8} were drawn. The values of {X9, X10} and {X11, X12} were drawn analogously

with the difference that for these the values in the second class concentrate in a different corner

of V . The values of {X7, X8} in the first class were drawn from the following distribution:
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The values of {X7, X8} in the second class were drawn from the following distribution:
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Here, a is fixed to the same value 1.772 that was also used in the case of {X13, X14}, that is, the

variable pair with strong qualitative interaction effect. The larger the value of πa is, the greater is

the concentration of the second class in the lower-right corner. We fixed πa to that value for which
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the overlapping index between the two class-specific joint distributions of {X7, X8} took the same

value as that for {X13, X14}. An obvious alternative to this proceeding would have been to fix

πa to the value one and alter the value of a for achieving the desired overlapping index instead

of diminishing the concentration of observations in the lower-right corner until the desired value

of the overlapping index was achieved. However, this procedure would have led to a too small a

value, because for quantitative interaction effects the variable value pairs in the second class vary

less than in the case of qualitative interaction effects. As a consequence, the means of the normal

mixture components in equations (3) and (4) associated with the same overlapping index value as

in the case of the strong qualitative interaction effect would have been close to each other. The

following πa values resulted for strong, moderate, and weak effects: 0.649, 0.574, and 0.485. The

same a values (1.772, 1.51, and 1.225) as in the case of the qualitative interaction effects were used

for the three effect strength levels.
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F Ranks the variables and variable pairs obtained for the

individual data sets using the different methods
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Fig. S44: Simulation results – univariable effects. The boxplots show the ranks the respective
variables obtained using each simulated data set. Note that for the variables with main effects
only, each effect strength was represented by two variables in the simulation design. The boxplots
show the pooled ranks obtained for both variables of each effect strength. The y-axes are shown
on log scale.
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Fig. S45: Simulation results – quantitative interaction effects. The boxplots show the ranks the
respective variable pairs obtained using each simulated data set. The y-axes are shown on log
scale.
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Fig. S46: Simulation results – qualitative interaction effects. The boxplots show the ranks the
respective variable pairs obtained using each simulated data set. The y-axes are shown on log
scale.
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G Median ranks variable pairs with main effects, but with-

out interaction effects, obtained using the different meth-

ods

Effect: Strong Moderate Weak

n = 100

IF-EIM-qual 992.5 [591.0, 1414.2] 1032.5 [606.2, 1460.5] 1004.5 [571.2, 1589.0]

IF-EIM-quant 28.0 [6.0, 114.8] 93.5 [20.0, 329.8] 338.0 [154.8, 1028.2]

RF-V-pairs 2.0 [1.0, 6.0] 93.0 [15.8, 163.2] 336.5 [222.5, 475.5]

PA 5.0 [2.0, 33.8] 56.0 [13.8, 246.2] 497.5 [136.8, 1433.5]

IMDMS 2.0 [1.0, 6.0] 30.5 [11.0, 79.0] 297.5 [140.5, 491.2]

iRF 3.0 [1.0, 6.0] (99%) 15.0 [7.0, 24.0] (72%) 26.0 [16.5, 36.0] (14%)

n = 500

IF-EIM-qual 741.0 [382.0, 1117.5] 816.0 [411.5, 1350.8] 951.0 [487.5, 1443.2]

IF-EIM-quant 23.5 [6.8, 124.0] 52.0 [11.0, 211.2] 192.0 [65.0, 465.5]

RF-V-pairs 1.0 [1.0, 1.0] 77.0 [16.0, 136.0] 343.0 [271.0, 399.8]

PA 1.0 [1.0, 2.0] 15.5 [9.0, 30.2] 195.5 [47.8, 714.2]

IMDMS 1.0 [1.0, 1.0] 13.0 [9.0, 18.0] 233.0 [143.8, 316.2]

iRF 1.0 [1.0, 2.0] (100%) 17.0 [11.0, 26.0] (98%) 52.0 [45.0, 63.5] (18%)

n = 1000

IF-EIM-qual 665.0 [372.8, 1031.0] 739.5 [345.0, 1134.2] 788.5 [328.2, 1328.0]

IF-EIM-quant 17.0 [5.0, 72.0] 31.0 [12.0, 140.0] 111.0 [29.8, 346.8]

RF-V-pairs 1.0 [1.0, 1.0] 79.0 [18.0, 136.0] 339.0 [282.0, 395.0]

PA 1.0 [1.0, 2.0] 19.5 [8.0, 83.5] 201.0 [64.5, 553.8]

IMDMS 1.0 [1.0, 1.0] 13.0 [10.0, 18.0] 203.0 [155.8, 282.0]

iRF 1.0 [1.0, 2.0] (100%) 11.0 [7.0, 17.0] (100%) 78.5 [63.0, 92.8] (27%)

Table S1: Simulation results – median ranks obtained for variable pairs with main effects, but
without interaction effects. We considered the pair with the two variables that both have strong
effects (“Strong”), the pair with the the two variables that both have moderate effects (“Moder-
ate”), and the pair with the two variables that both have weak effects (“Weak”). The numbers
show the median ranks the respective variable pairs obtained across the simulated data sets. The
numbers in square brackets show the 25% quantiles and 75% quantiles of the ranks obtained for
the simulated data sets. In the case of iRF, the percentages of the simulated data sets for which
the respective pairs were selected using iRF are given in addition.
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of the 18th European conference on Machine Learning , pages 323–334.

Sorokina, D., Caruana, R., Riedewald, M., and Fink, D. (2008). Detecting statistical interac-
tions with additive groves of trees. In W. Cohen, A. K. McCallum, and S. T. Roweis, editors,
Proceedings of the 25th international conference on Machine learning , pages 1000–1007.

Utgoff, P. E. and Brodley, C. E. (1990). An incremental method for finding multivariate splits
for decision trees. In B. Porter and R. Mooney, editors, Proceedings of the Sevent International
Conference on Machine Learning , pages 58–65.

Vanschoren, J., van Rijn, J. N., Bischl, B., and Torgo, L. (2013). OpenML: Networked Science
in Machine Learning. SIGKDD Explorations, 15(2), 49–60.

Wickramarachchi, D. C., Robertson, B. L., Reale, M., Price, C. J., and Brown, J. (2015). HH-
CART: An oblique decision tree. Computational Statistics and Data Analysis, 96, 12–23.

Wright, M. N. and König, I. R. (2019). Splitting on categorical predictors in random forests.
PeerJ , 7, e6339.

Yıldız, O. T. and Alpaydın, E. (2001). Omnivariate decision trees. IEEE Transactions on Neural
Networks, 12(6), 1539–1546.

Yoshida, M. and Koike, A. (2011). SNPInterForest: A new method for detecting epistatic inter-
actions. BMC Bioinformatics, 12, 469.

Zhou, M., Dai, M., Yao, Y., Liu, J., Yang, C., and Peng, H. (2019). BOLT-SSI: A statistical
approach to screening interaction effects for ultra-high dimensional data. arXiv:1902.03525.

71


	Descriptions of existing work on multivariate trees, multivariate tree ensembles, and approaches to identifying interactions from tree ensembles
	Overview and discussion of multivariate tree approaches
	Random forest-based approaches that use multivariate trees
	Approaches to identifying interactions from tree ensembles

	Details on the interaction forest algorithm
	Prediction algorithm
	Procedure used for pre-selecting variable pairs that show indications of interaction effects
	Handling of unordered categorical covariate variables
	Procedure used for drawing pb(j2)
	Hyperparameter values used by default
	Procedure for adjusting the raw quantitative EIM values to make them specific for quantitative interaction effects

	Real data based exemplary interaction forest analyses
	'stock' data – continuous outcome
	'zoo' data – binary covariate variables
	'white-clover' data – small sample size
	'colon-rna' data – high-dimensional data, survival and binaryoutcome

	Real data study: Further details and results
	Further details on the study design
	Dependencies of the ranks the methods achieved with respect to the different metrics on the numbers of variables and the sample sizes

	Simulation study: Further details on the study design and the simulation setting
	Further details on the study design
	Exemplary pairs of variables in a simulated data set
	Detailed description of the simulation setting

	Ranks the variables and variable pairs obtained for the individual data sets using the different methods
	Median ranks variable pairs with main effects, but without interaction effects, obtained using the different methods

