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A Algorithm used in R package ordinalForest for generating

the class width sets

As mentioned in the description of the OF algorithm in section 2.1 of the main paper it is important

that the collection of sets {db,1, . . . , db,J+1} (b ∈ {1, . . . , Bsets}) is heterogeneous enough across

the iterations 1, . . . , Bsets to ensure that the best of the considered sets {db,1, . . . , db,J+1} feature

an OOB prediction performance close to that of the best possible set.

The following algorithm is used in the R package ordinalForest for generating the collection

of sets {db,1, . . . , db,J+1} (b ∈ {1, . . . , Bsets}):

1. In this step the rankings of the class widths for each of the Bsets sets are generated.

If J ! < Bsets this is performed as follows:

1.1. Generate all J ! possible permutations of 1, . . . , J and permute this set of permutations

randomly. The result of the latter step is the rankings {rb,1, . . . , rb,J}, b = 1, . . . , J !, for

the first J ! sets.

1.2. Copy each of the rankings {rb,1, . . . , rb,J}, b = 1, . . . , J !, bBsets/J !c−1 times to produce

the rankings {rb,1, . . . , rb,J}, b = J !+1, . . . , J !bBsets/J !c, for the next J !(bBsets/J !c−1)

sets.

1.3. The last rankings {rb,1, . . . , rb,J}, b = J !bBsets/J !c+ 1, . . . , Bsets, are produced through

random sampling from the first J ! rankings {rb,1, . . . , rb,J}, b = 1, . . . , J !.

If J ! ≥ Bsets the generation of the rankings of the class widths for each set is performed as

follows:

1.1. Permute 1, . . . , J randomly once to produce the ranking {r1,1, . . . , r1,J} for the first set.

1.2. For b = 2, . . . , Bsets: Draw Nperm (e.g., Nperm = 500) random permutations of 1, . . . , J

denoted as {r∗l,1, . . . , r∗l,J}, l = 1, . . . , Nperm. Determine that permutation from {r∗l,1, . . . ,
r∗l,J}, l = 1, . . . , Nperm that features the greatest quadratic distance to {rb−1,1, . . . , rb−1,J},
that is arg max{r∗l,1,...,r∗l,J}

∑J
j=1(r∗l,j − rb−1,j)2 and use this permutation as the ranking

for the bth set.

2. In this step the sets {db,1, . . . , db,J+1} for all iterations b = 1, . . . , Bsets are generated.

For b = 1, . . . , Bsets:

2.1. Draw J − 1 instances of a U(0, 1) distributed random variable and sort the resulting

values. The sorted values are designated as d∗b,2, . . . , d
∗
b,J . Moreover, set d∗b,1 := 0 and

d∗b,J+1 := 1.

2.2. Re-order the intervals of the [0, 1] partition {d∗b,1, . . . , d∗b,J+1} in such a way that the jth

interval, j = 1, . . . , J , is that interval out of ]d∗b,1, d
∗
b,2], . . . , ]d∗b,J , d

∗
b,J+1] that features the

rb,jth smallest width and use this re-ordered partition as the bth set {db,1, . . . , db,J+1}.
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B Supplementary Figures: real data analysis - (weighted)

Kappa values
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Supplementary Figure 1: Values of quadratically weighted Kappa for each of the five datasets and
each of the four methods considered. Each boxplot shows the values obtained for the individual
repetitions of the 10-fold stratified cross-validation.
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Supplementary Figure 2: Values of Cohen’s Kappa for each of the five datasets and each of the
four methods considered. Each boxplot shows the values obtained for the individual repetitions
of the 10-fold stratified cross-validation.

3



C Supplementary Figures: simulation - (weighted) Kappa

values
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Supplementary Figure 3: Values of quadratically weighted Kappa for each simulation setting with
equal class widths and each of the three methods considered. Each boxplot shows the values
obtained on the corresponding test dataset for each of the 100 simulation iterations.
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Supplementary Figure 4: Values of Cohen’s Kappa for each simulation setting with equal class
widths and each of the three methods considered. Each boxplot shows the values obtained on the
corresponding test dataset for each of the 100 simulation iterations.
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Supplementary Figure 5: Values of quadratically weighted Kappa for each simulation setting with
random class widths and each of the three methods considered. Each boxplot shows the values
obtained on the corresponding test dataset for each of the 100 simulation iterations.
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Supplementary Figure 6: Values of Cohen’s Kappa for each simulation setting with random class
widths and each of the three methods considered. Each boxplot shows the values obtained on the
corresponding test dataset for each of the 100 simulation iterations.
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D Supplementary Figures: simulation - AUC values ob-

tained for variable importance measures
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Supplementary Figure 7: AUC values associated with the VIMs for each simulation setting with
equal class widths and each of the three methods considered. Each boxplot shows the values
obtained for the 100 simulation iterations.
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Supplementary Figure 8: AUC values associated with the VIMs for each simulation setting with
random class widths and each of the three methods considered. Each boxplot shows the values
obtained for the 100 simulation iterations.
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E Estimation of class widths

In the following only the settings with the covariates and sample size scenarios “correlated n400”,

“independent n400”, and “highdim” are considered for the following reasons: The remaining co-

variates and sample size scenarios “correlated n200” and “independent n200” distinguish them-

selves from “correlated n400” and “independent n400” merely by a smaller number of training

observations. Using the scenarios with higher number of training observations, more reliable re-

sults can be expected. Moreover, considering less settings makes the interpretation of the results

easier.

E.1 Equal class widths

In terms of prediction performance, for the settings with equal class widths OF outperformed naive

OF to a considerably stronger degree than for the settings with random class widths (see section

3.2.2 of the main paper). Supplementary Figures 9 to 17 show for 20 simulated datasets from

each of the considered settings the estimated partitions of [0, 1] resulting from the OF algorithm,

before and after transforming the interval borders by the quantile function of the standard normal

distribution (“φ−1-transforming”). For comparison, the true partitions of [0, 1] before and after

φ−1-transforming are shown as well (see again section 3.2.1 of the main paper for the simulation

design). In all cases, we clearly observe that the widths of the classes close to the center of the

class value ranges that are represented by many observations in the dataset are associated with

very small estimated widths. Correspondingly, the class widths of the classes close to the margins

of the class value ranges that are represented by fewer observations are estimated much larger.

Exceptions of this tendency of larger estimated class widths for classes close to the margins of the

class value ranges are classes that are both very close to the margin and are represented by very

few observations.

In the next subsection, in cases in which there is no chance of confusion, the true partitions of

[0, 1] underlying the simulated datasets will often be denoted shortly as “(true) partitions” and the

estimated partitions [0, 1] from the OF algorithm as “estimated partitions”. In the descriptions

only the versions of these partitions before φ−1-transforming will be considered, not the φ−1-

transformed versions. This choice was made because first, the partitions of [0, 1] are bounded,

second, the conclusions drawn from considering both version are practically identical due to the

one-to-one relationship between the partitions before and after φ−1-transforming, and third, for

the sake of clarity.
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Supplementary Figure 9: True and estimated class widths for the setting with equal class widths,
covariates and sample size scenario “correlated n400”, and “nclass = 3”. Upper panels: true
partition of [0, 1] before (left panel) and after (right panel) transforming the interval borders by the
quantile function of the standard normal distribution (φ−1-transforming); lower panels: estimated
partitions of [0, 1] for 20 simulated datasets before (left panel) and after φ−1-transforming (right
panel).
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Supplementary Figure 10: True and estimated class widths for the setting with equal class widths,
covariates and sample size scenario “independent n400”, and “nclass = 3”. Upper panels: true
partition of [0, 1] before (left panel) and after (right panel) transforming the interval borders by the
quantile function of the standard normal distribution (φ−1-transforming); lower panels: estimated
partitions of [0, 1] for 20 simulated datasets before (left panel) and after φ−1-transforming (right
panel).
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Supplementary Figure 11: True and estimated class widths for the setting with equal class widths,
covariates and sample size scenario “highdim”, and “nclass = 3”. Upper panels: true partition of
[0, 1] before (left panel) and after (right panel) transforming the interval borders by the quantile
function of the standard normal distribution (φ−1-transforming); lower panels: estimated par-
titions of [0, 1] for 20 simulated datasets before (left panel) and after φ−1-transforming (right
panel).
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Supplementary Figure 12: True and estimated class widths for the setting with equal class widths,
covariates and sample size scenario “correlated n400”, and “nclass = 6”. Upper panels: true
partition of [0, 1] before (left panel) and after (right panel) transforming the interval borders by the
quantile function of the standard normal distribution (φ−1-transforming); lower panels: estimated
partitions of [0, 1] for 20 simulated datasets before (left panel) and after φ−1-transforming (right
panel).
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Supplementary Figure 13: True and estimated class widths for the setting with equal class widths,
covariates and sample size scenario “independent n400”, and “nclass = 6”. Upper panels: true
partition of [0, 1] before (left panel) and after (right panel) transforming the interval borders by the
quantile function of the standard normal distribution (φ−1-transforming); lower panels: estimated
partitions of [0, 1] for 20 simulated datasets before (left panel) and after φ−1-transforming (right
panel).
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Supplementary Figure 14: True and estimated class widths for the setting with equal class widths,
covariates and sample size scenario “highdim”, and “nclass = 6”. Upper panels: true partition of
[0, 1] before (left panel) and after (right panel) transforming the interval borders by the quantile
function of the standard normal distribution (φ−1-transforming); lower panels: estimated par-
titions of [0, 1] for 20 simulated datasets before (left panel) and after φ−1-transforming (right
panel).
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Supplementary Figure 15: True and estimated class widths for the setting with equal class widths,
covariates and sample size scenario “correlated n400”, and “nclass = 9”. Upper panels: true
partition of [0, 1] before (left panel) and after (right panel) transforming the interval borders by the
quantile function of the standard normal distribution (φ−1-transforming); lower panels: estimated
partitions of [0, 1] for 20 simulated datasets before (left panel) and after φ−1-transforming (right
panel).
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Supplementary Figure 16: True and estimated class widths for the setting with equal class widths,
covariates and sample size scenario “independent n400”, and “nclass = 9”. Upper panels: true
partition of [0, 1] before (left panel) and after (right panel) transforming the interval borders by the
quantile function of the standard normal distribution (φ−1-transforming); lower panels: estimated
partitions of [0, 1] for 20 simulated datasets before (left panel) and after φ−1-transforming (right
panel).
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Supplementary Figure 17: True and estimated class widths for the setting with equal class widths,
covariates and sample size scenario “highdim”, and “nclass = 9”. Upper panels: true partition of
[0, 1] before (left panel) and after (right panel) transforming the interval borders by the quantile
function of the standard normal distribution (φ−1-transforming); lower panels: estimated par-
titions of [0, 1] for 20 simulated datasets before (left panel) and after φ−1-transforming (right
panel).
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E.2 Random class widths

Supplementary Figures 18 to 26 show for 10 simulated datasets the true and estimated partitions

of [0, 1] before and after φ−1-transforming. Again we observe that the classes closer to the margins

of the class value range tend to be associated with larger estimated class widths than the classes

close to the middle of the class value range. There is again no apparent resemblance between

the true and estimated partitions. In the special case of “nclass = 3”, there is a strong negative

correlation between the class widths of the true and estimated partitions for classes 1 and 3.

Supplementary Figures 27 to 29 show scatterplots of the relationships between true and esti-

mated class widths.

For all three studied covariates and sample size scenarios we observe that for “nclass = 3” large

estimated class widths can result only for small true class widths. For larger true class widths

the corresponding estimated class widths are small. Moreover, the three plots suggest that, with

some exceptions, the widths of the class in the middle are estimated very small independent on

whether the true class widths are small or large.

In the case of “nclass = 6” the picture differs between the three scenarios studied. For all three

scenarios the widths of the classes on the margins of the class value range are estimated larger

than the other classes. Moreover, in all three scenarios except for in the cases of the classes on the

margins of the class value range there is no dependency of the estimated class widths on the true

class widths. However, scenario “correlated n400” differs from the scenarios “independent n400’

and “highdim” in the following two points: 1) For “correlated n400” there is a strong negative

correlation between the true and estimated class widths for the classes on the margins of the class

value range (i.e., classes 1 and 6), whereas for the other two scenarios this correlation is positive;

2) For “correlated n400” the widths of classes 2 to 5 are not estimated systematically different,

whereas for the other two scenarios the classes closer to the middle of the class value ranges are

estimated smaller. As stated in section 3.2.2 of the main paper, for scenario “correlated n400” the

dependency of the continuous response variable on the covariates is less refined than for scenario

“independent n400” with frequent very large or very small values of the linear predictor. This

leads to a greater signal with respect to explaining the classes on the margins of the class value

range. This better predictability of the low and high classes for scenario “correlated n400” helps

to explain why for this scenario there is such a strong relation between true and estimated class

widths for these classes. While the coarseness of the signal for this scenario is associated with a

better predictability of the classes on the margins of the class value range it also leads to a low

discriminability between the other classes. The latter might explain why there are no systematic

differences between the estimated class widths for these classes. Other than for the classes on the

margins of the class value range, there might simply be no optimal class widths for particular classes

that would lead to a better predictability of these classes. The fact that for scenario “highdim” we

do not observe a similar picture as for scenario “correlated n400” but instead a similar picture as

for scenario “independent n400” is probably explainable by the fact that the strong correlations

between the influential variables in “highdim” are not as influential as in “correlated n400” due

to the high number of covariates in “highdim”.

For the settings with “nclass = 9” there are no appreciably strong dependencies of the estimated

class widths on the true class widths. However, also here the widths of the classes in the middle
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are estimated smaller than the widths of the low and high classes, where again for the scenario

“correlated n400” the widths of the classes in the middle do not differ systematically from each

other.
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Supplementary Figure 18: True and estimated class widths for 10 simulated datasets for the setting
with random class widths, covariates and sample size scenario “correlated n400”, and “nclass =
3”. Each row shows for a particular dataset the true and estimated partition of [0, 1] before (left
panel) and after φ−1-transforming (right panel).
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Supplementary Figure 19: True and estimated class widths for 10 simulated datasets for the setting
with random class widths, covariates and sample size scenario “independent n400”, and “nclass =
3”. Each row shows for a particular dataset the true and estimated partition of [0, 1] before (left
panel) and after φ−1-transforming (right panel).
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Supplementary Figure 20: True and estimated class widths for 10 simulated datasets for the setting
with random class widths, covariates and sample size scenario “highdim”, and “nclass = 3”. Each
row shows for a particular dataset the true and estimated partition of [0, 1] before (left panel) and
after φ−1-transforming (right panel).
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Supplementary Figure 21: True and estimated class widths for 10 simulated datasets for the setting
with random class widths, covariates and sample size scenario “correlated n400”, and “nclass =
6”. Each row shows for a particular dataset the true and estimated partition of [0, 1] before (left
panel) and after φ−1-transforming (right panel).
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Supplementary Figure 22: True and estimated class widths for 10 simulated datasets for the setting
with random class widths, covariates and sample size scenario “independent n400”, and “nclass =
6”. Each row shows for a particular dataset the true and estimated partition of [0, 1] before (left
panel) and after φ−1-transforming (right panel).
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Supplementary Figure 23: True and estimated class widths for 10 simulated datasets for the setting
with random class widths, covariates and sample size scenario “highdim”, and “nclass = 6”. Each
row shows for a particular dataset the true and estimated partition of [0, 1] before (left panel) and
after φ−1-transforming (right panel).
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Supplementary Figure 24: True and estimated class widths for 10 simulated datasets for the setting
with random class widths, covariates and sample size scenario “correlated n400”, and “nclass =
9”. Each row shows for a particular dataset the true and estimated partition of [0, 1] before (left
panel) and after φ−1-transforming (right panel).
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Supplementary Figure 25: True and estimated class widths for 10 simulated datasets for the setting
with random class widths, covariates and sample size scenario “independent n400”, and “nclass =
9”. Each row shows for a particular dataset the true and estimated partition of [0, 1] before (left
panel) and after φ−1-transforming (right panel).
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Supplementary Figure 26: True and estimated class widths for 10 simulated datasets for the setting
with random class widths, covariates and sample size scenario “highdim”, and “nclass = 9”. Each
row shows for a particular dataset the true and estimated partition of [0, 1] before (left panel) and
after φ−1-transforming (right panel).
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Supplementary Figure 27: Estimated versus true class widths for settings with random class widths
and covariates and sample size scenario “correlated n400”. The lines show fits of quasi-binomial
regression using penalized thin plate regression splines. The points show the pairs of true and
corresponding estimated class widths, where in each case 200 pairs from all pairs available were
subsampled for reasons of clarity.
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Supplementary Figure 28: Estimated versus true class widths for settings with random class widths
and covariates and sample size scenario “independent n400”. The lines show fits of quasi-binomial
regression using penalized thin plate regression splines. The points show the pairs of true and
corresponding estimated class widths, where in each case 200 pairs from all pairs available were
subsampled for reasons of clarity.

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9
True class width

E
st

im
at

ed
 c

la
ss

 w
id

th

class
●

●

1 or 3
other class

5

10

count

nclass = 3

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6 0.8
True class width

E
st

im
at

ed
 c

la
ss

 w
id

th

class
●

●

●

1 or 6
2 or 5
other class

20

40

60

count

nclass = 6

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●

● ●● ●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●●
● ●

●

●

●

●
● ●

●

●
●

●

●●

●

●●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●
●

●●

●

●

●

●

● ●
●

●

●

● ●●
●●

●

●

●

●

●●
●

●

●
●

●
●

●
●

●

●

●●
●

●●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6
True class width

E
st

im
at

ed
 c

la
ss

 w
id

th

class
●

●

●

1 or 9
2 or 8
other class

40
80
120
160

count

nclass = 9

Supplementary Figure 29: Estimated versus true class widths for settings with random class widths
and covariates and sample size scenario “highdim”. The lines show fits of quasi-binomial regression
using penalized thin plate regression splines. The points show the pairs of true and corresponding
estimated class widths, where in each case 200 pairs from all pairs available were subsampled for
reasons of clarity.
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F Influence of the class distribution on the performance of

OF

Again only the covariates and sample size scenarios “correlated n400”, “independent n400”, and

“highdim” will be considered. Moreover, all those simulated datasets will be excluded for which

OF or naive OF or both of the latter featured a linearly weighted Kappa value smaller than 0.1.

This choice was made for two reasons: 1) to exclude pathological partitions, for example partitions

for which some class widths are extremely small or for which one class width is very large; 2) to

avoid outlying values of the ratio between the linearly weighted Kappa values obtained for OF and

naive OF (see below) that would result when the smaller value of the pair of values is by chance

much smaller than the higher value.

Supplementary Figures 30 to 38 show for each setting and each considered simulated dataset

the true class distribution together with the ratio between the value of the linearly weighted Kappa

obtained for OF and the corresponding value obtained for naive OF.

For the setting “correlated n400” with “nclass = 3” we clearly observe that for those class

distributions for which there is the greatest improvement of OF over naive OF, the width of

the middle class (i.e., class 2) is much larger than the widths of classes 1 and 3. These class

distributions, moreover, tend to be symmetric in the sense that the widths of class 1 and class

3 tend to be approximately equally wide. In the cases of the class distributions for which OF is

slightly worse than naive OF the middle class features a comparably small width, where at least one

of the classes 1 and 3 features a larger or much larger width. For the setting “independent n400”

with “nclass = 3” we make similar observations as for “correlated n400”. The corresponding

effects, however, appear less strong, because for this scenario there are no class distributions

for which the middle class features a very large width. This is because for this scenario the

simulated datasets associated with such class distributions did not meet the filtering criterion on

the minimum required classification performance described above. For the setting “highdim” with

“nclass = 3” again similar observations are made. Nevertheless, in the case of this setting for

some of the datasets with considerably better performance of OF than naive OF, the widths of

the middle class are narrow.

In comparison to the settings with “nclass = 3” where the small number of classes made the

interpretation of the results very easy, for “nclass = 6” it is less easy to recognize features of

the class distributions associated with a particularly strong performance of OF. Nevertheless, the

following tendencies can be identified easily studying the corresponding figures (Supplementary

Figures 33 to 35): 1) Class distributions associated with a particularly well performance of OF in

comparison to that of naive OF often feature small widths of the low and high classes and large

widths of one or several classes around the center of the partitions; 2) Conversely, in cases for which

OF is inferior to or at least not superior over naive OF, the corresponding class distributions tend

to feature large widths of the low and high classes and small widths of the classes in the middle.

For the settings with “nclass = 9” we again observe the tendency that OF seems to perform

especially strong in comparison to naive OF if the widths of the classes around the center of the

partition are larger than those of the low and high classes.

31



25

50

75

100

0.00 0.25 0.50 0.75 1.00

True partition

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.00 1.05 1.10 1.15 1.20

Ratio between linearly
 weighted Kappa obtained
 for OF and naive OF

Supplementary Figure 30: True partitions and corresponding performance of OF compared against
naive OF - covariates and sample size scenario “correlated n400” with “nclass = 3”. Each row
in the plot shows the true partition underlying one of the simulated datasets (left panel) and the
ratio between the value of the linearly weighted Kappa obtained for that dataset using OF and
using naive OF, respectively (right panel). The rows are ordered in decreasing order with respect
to the ratio between the values of the linearly weighted Kappa obtained for the two methods.
That is, the partitions for which the performance of OF was best compared to naive OF are in
the top part of the figure.
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Supplementary Figure 31: True partitions and corresponding performance of OF compared against
naive OF - covariates and sample size scenario “independent n400” with “nclass = 3”. Each row
in the plot shows the true partition underlying one of the simulated datasets (left panel) and the
ratio between the value of the linearly weighted Kappa obtained for that dataset using OF and
using naive OF, respectively (right panel). The rows are ordered in decreasing order with respect
to the ratio between the values of the linearly weighted Kappa obtained for the two methods.
That is, the partitions for which the performance of OF was best compared to naive OF are in
the top part of the figure.
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Supplementary Figure 32: True partitions and corresponding performance of OF compared against
naive OF - covariates and sample size scenario “highdim” with “nclass = 3”. Each row in the
plot shows the true partition underlying one of the simulated datasets (left panel) and the ratio
between the value of the linearly weighted Kappa obtained for that dataset using OF and using
naive OF, respectively (right panel). The rows are ordered in decreasing order with respect to
the ratio between the values of the linearly weighted Kappa obtained for the two methods. That
is, the partitions for which the performance of OF was best compared to naive OF are in the top
part of the figure.
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Supplementary Figure 33: True partitions and corresponding performance of OF compared against
naive OF - covariates and sample size scenario “correlated n400” with “nclass = 6”. Each row
in the plot shows the true partition underlying one of the simulated datasets (left panel) and the
ratio between the value of the linearly weighted Kappa obtained for that dataset using OF and
using naive OF, respectively (right panel). The rows are ordered in decreasing order with respect
to the ratio between the values of the linearly weighted Kappa obtained for the two methods.
That is, the partitions for which the performance of OF was best compared to naive OF are in
the top part of the figure.
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Supplementary Figure 34: True partitions and corresponding performance of OF compared against
naive OF - covariates and sample size scenario “independent n400” with “nclass = 6”. Each row
in the plot shows the true partition underlying one of the simulated datasets (left panel) and the
ratio between the value of the linearly weighted Kappa obtained for that dataset using OF and
using naive OF, respectively (right panel). The rows are ordered in decreasing order with respect
to the ratio between the values of the linearly weighted Kappa obtained for the two methods.
That is, the partitions for which the performance of OF was best compared to naive OF are in
the top part of the figure.
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Supplementary Figure 35: True partitions and corresponding performance of OF compared against
naive OF - covariates and sample size scenario “highdim” with “nclass = 6”. Each row in the
plot shows the true partition underlying one of the simulated datasets (left panel) and the ratio
between the value of the linearly weighted Kappa obtained for that dataset using OF and using
naive OF, respectively (right panel). The rows are ordered in decreasing order with respect to
the ratio between the values of the linearly weighted Kappa obtained for the two methods. That
is, the partitions for which the performance of OF was best compared to naive OF are in the top
part of the figure.
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Supplementary Figure 36: True partitions and corresponding performance of OF compared against
naive OF - covariates and sample size scenario “correlated n400” with “nclass = 9”. Each row
in the plot shows the true partition underlying one of the simulated datasets (left panel) and the
ratio between the value of the linearly weighted Kappa obtained for that dataset using OF and
using naive OF, respectively (right panel). The rows are ordered in decreasing order with respect
to the ratio between the values of the linearly weighted Kappa obtained for the two methods.
That is, the partitions for which the performance of OF was best compared to naive OF are in
the top part of the figure.
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Supplementary Figure 37: True partitions and corresponding performance of OF compared against
naive OF - covariates and sample size scenario “independent n400” with “nclass = 9”. Each row
in the plot shows the true partition underlying one of the simulated datasets (left panel) and the
ratio between the value of the linearly weighted Kappa obtained for that dataset using OF and
using naive OF, respectively (right panel). The rows are ordered in decreasing order with respect
to the ratio between the values of the linearly weighted Kappa obtained for the two methods.
That is, the partitions for which the performance of OF was best compared to naive OF are in
the top part of the figure.
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Supplementary Figure 38: True partitions and corresponding performance of OF compared against
naive OF - covariates and sample size scenario “highdim” with “nclass = 9”. Each row in the
plot shows the true partition underlying one of the simulated datasets (left panel) and the ratio
between the value of the linearly weighted Kappa obtained for that dataset using OF and using
naive OF, respectively (right panel). The rows are ordered in decreasing order with respect to
the ratio between the values of the linearly weighted Kappa obtained for the two methods. That
is, the partitions for which the performance of OF was best compared to naive OF are in the top
part of the figure.
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G Influence of the choice of the performance function used

in the OF algorithm

In the analyses presented in the main paper and in the other sections of the Supplementary

Material, the variant gclequal of the performance function was used. This variant of the performance

function attributes the same weight to the Youden’s index of each class. It thus should lead to a

fairly balanced classification performance across the classes. The performance function gclprop by

contrast weighs the Youden’s indices proportional to the class sizes. This should have the effect

that observations from large classes are classified with particular accuracy, which in turn should

have the effect that more observations in total are correctly classified, at the expense, however, of

a lower performance with respect to classifying correctly observations from the small classes. The

last of the considered special cases of the performance functions is gclj. This version attributes full

weight to the Youden’s index of class j, assigning zero weight to the Youden’s indices of the other

classes. Therefore, this performance function should lead to a strong prediction performance with

respect to distinguishing observations in class j from observations not in class j.

In the analysis presented in this section, how far these three different variants of the perfor-

mance function are actually associated with the specific kinds of prediction performance they are

intended for was investigated. Again the simulation design presented in section 3.2.1 was used and

50 pairs of training and test datasets per setting were generated. To each training dataset OF was

applied using the performance functions gclequal, gclprop, and gclj with j = 2 and the performance

was evaluated on the test dataset using the performance metrics described below.

In the following TPj (j ∈ {1, . . . , J}) denotes the number of observations in a test dataset

which are in class j and for which class j is predicted. Moreover, FNj denotes the number of test

observations in class j for which a different class than class j is predicted. The sensitivity for the

prediction of class j is thus: TPRj = TPj/(FNj + TPj).

Two common ways of averaging class-specific sensitivities across classes are the macro-average

and the micro-average [Antonie and Zäıane, 2002], termed MaA and MiA, respectively, in the

following. MaA and MiA are given by:

MaA =
1

J

J∑
j=1

TPj

FNj + TPj
=

1

J

J∑
j=1

TPRj MiA =

∑J
j=1 TPj∑J

j=1 FNj + TPj

MaA weighs all classes equally, independent of their sizes [Antonie and Zäıane, 2002]. Thus,

among the three performance functions considered, gclequal should lead to optimal MaA values.

MiA by contrast weighs all test observations equally, thus favoring larger classes [Antonie and

Zäıane, 2002]. Therefore, gclprop should lead to optimal MiA values among the three performance

functions. Finally, gclj with j = 2 should lead to optimal values of TPR2.

Supplementary Figures 39 to 44 show the values of MaA, MiA, and TPR2 obtained for all

simulation settings.

For some settings gclequal clearly delivered the highest MaA values, while for other settings

there is only a slight or no improvement over the other variants of the performance functions

considered (Supplementary Figures 39 and 40). For the settings with equal class widths, there are

stronger differences between the MaA values obtained for different performance functions. The
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variant gclequal tends to outperform the other two variants of the performance function stronger

for “nclass = 6” and “nclass = 9” than for “nclass = 3”. This suggests that using gclequal is more

effective in cases of higher numbers of classes.

In the case of the MiA values, the picture is similar (Supplementary Figures 41 and 42).

For some settings, we observe slightly higher MiA values for gclprop than for gclequal, while for

other settings there is no difference between these two functions. In general, the differences are,

however, much smaller than in the case of the MaA values. The performance function gclj with

j = 2 performed considerably worse for some settings and did not perform better than the other

two functions in any setting.

For most settings, gclj with j = 2 is clearly better than the other two functions with respect

to the TPR2 values (Supplementary Figures 43 and 44). Again, the improvement over the other

two functions is higher for “nclass = 6” and “nclass = 9” than for “nclass = 3”. This is probably

explainable by the fact that for “nclass = 3” the class 2 that is considered by gclj with j = 2 is the

class in the middle: Classes in the middle of the class value range are predicted more frequently

than classes on the margins of the class value range, which is why putting the focus on class 2 by

using the performance function gclj with j = 2 might be less effective in the case of “nclass = 3”.

For “nclass = 6” and “nclass = 9”, class 2 is, by contrast, closer to the lower margin of the class

range, which is why for these settings the OF algorithm probably profits more from the priority

attributed to class 2 through the use of gclj with j = 2 than for “nclass = 3”. For the settings

with equal class widths we observe for “nclass = 3” TPR2 values close to one in all settings. This

is explainable by the high number of observations of class 2 in these settings and, in particular

for the scenarios “independent n200”, “independent n400”, and “highdim”, by the fact that class

2 is almost always predicted for “nclass = 3”. Another peculiarity we observe for the settings

with equal class widths is that for “independent n200”, “independent n400”, and “highdim” the

TPR2 values are close to zero for “nclass = 9”. This results from, both, the fact that, as discussed

in section E.2, the classes on the margins of the class value range are better predictable in the

settings with correlated covariates and by the fact that for “nclass = 9” there are only very few

observations in class 2 (in the mean there are 7 and 14 observations in this class for n = 200 and

n = 400, respectively, as a simple simple calculation shows).
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Supplementary Figure 39: MaA values for each simulation setting with equal class widths and
each of three performance functions considered. Each boxplot shows the values obtained on the
corresponding test dataset for each of the 50 simulation iterations.
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Supplementary Figure 40: MaA values for each simulation setting with random class widths and
each of three performance functions considered. Each boxplot shows the values obtained on the
corresponding test dataset for each of the 50 simulation iterations.
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Supplementary Figure 41: MiA values for each simulation setting with equal class widths and
each of three performance functions considered. Each boxplot shows the values obtained on the
corresponding test dataset for each of the 50 simulation iterations.
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Supplementary Figure 42: MiA values for each simulation setting with random class widths and
each of three performance functions considered. Each boxplot shows the values obtained on the
corresponding test dataset for each of the 50 simulation iterations.
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Supplementary Figure 43: TPR2 values for each simulation setting with equal class widths and
each of three performance functions considered. Each boxplot shows the values obtained on the
corresponding test dataset for each of the 50 simulation iterations.
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Supplementary Figure 44: TPR2 values for each simulation setting with random class widths and
each of three performance functions considered. Each boxplot shows the values obtained on the
corresponding test dataset for each of the 50 simulation iterations.
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H Hyperparameters in the OF algorithm: appropriateness

of their default values and robustness of the results with

respect to the choices of their values

H.1 Heuristic discussion on the influences of the hyperparameter values

on the performance of OF

The larger the value of Bsets is chosen, the nearer the Bbestsets best score sets will be to the optimal

score set, that is, the score set that is associated with the greatest OOB prediction performance.

Moreover, the larger the value of Bntreeprior, the more reliable will be the scb values. A large

value is also better in the case of Bntree, because the prediction performance and the stability of

the VI ranking will be higher for a higher number of trees. While the values of Bsets, Bntreeprior,

and Bntree should thus in principle be chosen as large as possible, extremely large values of these

parameters would lead to a too high computational burden. However, it is not necessary to choose

such extremely large values, because it is sufficient to set these parameters to values that are

large enough for practical purposes. The latter means that the values have to lie in an order of

magnitude for which no substantial improvement of the results would be attained by increasing

these values further.

The larger Nperm is chosen, the more different the class width rankings of directly consecutive

sets {db−1,1, . . . , db−1,J+1} and {db,1, . . . , db,J+1} (b ∈ {2, . . . , Bsets}) will be from one another.

However, the more different the class width ranking from iteration b is to that from iteration

b − 1, the more similar it tends to be to the class width ranking from iteration b − 2. As an

illustration: in the extreme case Nperm → ∞, there will merely be two different sets in the

collection of sets {db,1, . . . , db,J+1} (b ∈ {1, . . . , Bsets}), because {db−2,1, . . . , db−2,J+1} will be the

same as {db,1, . . . , db,J+1} for b ∈ {3, . . . , Bsets}. Leaving aside this extreme case, a large value of

Nperm has the effect that the resulting collection of class width rankings can be broken down into

pairs of clusters that feature very similar class width rankings within each of the two clusters, but

very dissimilar class width rankings across the two clusters. In the case of Nperm = 1, that is, if not

choosing the class width ranking of iteration b distant from that of iteration b− 1, the probability

of choosing very dissimilar sets of class width rankings would naturally be smaller. For a large

number J of classes it it is, however, important to choose such sets of strongly dissimilar class

width rankings, which will be explained in the following. In the case of a large J , the optimal class

width set cannot be approximated as precisely as in the case of a small J . In this situation, the

performance of OF will mainly depend on whether or not the optimized class width set features

characteristic patterns of the optimal class width set, for example, a very large class width for

class 1 and a particularly small class width for class 3. For a large Nperm, that is, when using a

collection of class width rankings that features pairs of clusters of similar rankings, where these

clusters are disparate from each other, we are likely to generate characteristic patterns of the

optimal class width set that are associated with a strong performance. Staying with the above

example, in such a collection of class width rankings there are many class width rankings for which

class 1 has highest rank and at the same time class 3 has lowest rank. In this situation, it is likely

that for some of the class width sets considered, class 1 features a very large width and class 3

49



a very small width. That is, the desired characteristic pattern of the class width ranking that is

associated with a strong performance of the OF will likely occur in several of the generated class

width sets. Put shortly, choosing a high value for Nperm leads to generating large tuples of class

width sets with distinct characteristics of the optimal class width set, which are associated with a

strong performance of the OF if taken into account. Note that for small numbers of classes (more

precisely for J ! < Bsets) a different algorithm is considered in the R package ordinalForest that

uses all J ! possible class width rankings and thus does not involve Nperm (see section A).

The optimal value of the number Bbestsets of score sets used to calculate the optimized score

set depends on the number Bsets of score sets tried. If Bsets is relatively small, a value of Bbestsets

that is too large will lead to the inclusion of suboptimal score sets too distinct from the optimal

score set, which is why in this situation the optimized score set will be far from the optimal score

set. If, again for a relatively small Bsets, the value of Bbestsets is, by contrast, too small, the

variance of the optimized score set will be too high. For larger values of Bsets, the results are less

sensitive to choosing a relatively large value of Bbestsets, because for a large Bsets the number of

tried score sets that are close to the optimal score set is higher. Moreover, the variance of the best

score sets tried, that is, those with the highest scb values, will be smaller for a large Bsets, because

by trying a larger number of score sets the best score sets will be nearer to the optimal score set.

Therefore the results are also less sensitive to choosing a relatively small value of Bbestsets when

Bsets is large. Summarizing, an adequate choice of Bbestsets is particularly important when Bsets

is relatively small, where the choice of the value of Bbestsets depends on the value of Bsets.

H.2 Simulation study on the appropriateness of the default hyperpa-

rameter values and the robustness of the OF performance with

respect to the choices of the values of the hyperparameters

Above the forms of the influences of the different hyperparameters of the OF algorithm on its

performance were discussed. In the following, an empirical analysis on the sensitivity of the

performance of OF to varying the values of the hyperparameters will be presented. Of particu-

lar interest will be to assess whether the default values considered for the hyperparameters are

appropriate.

In this analysis, for two simulations settings, namely (i) “correlated n200” with equal class

widths and “nclass = 6” and (ii) “highdim” with equal class widths and “nclass = 6”, twenty

pairs of training and test datasets were generated. OF was applied to each training dataset with

different values of the various hyperparameters and the values of the linearly weighted Kappa

were calculated on each corresponding test dataset. The simulation design was kept simple for

reasons of clarity and because the main interests of this study were merely to ensure that the

chosen default values of the hyperparameters are not grossly misspecified and to exclude the

possibility that there is a high sensitivity of the results regarding the choices of the values of these

hyperparameters. Equal class widths were considered, because for this scenario the results are less

variable than for random class widths. The latter makes it easier to study trends in the Kappa

values in dependency of the hyperparameter values. Moreover, one of the two settings features

a low-dimensional covariate vector and the other a high-dimensional covariate vector. For the

setting with low-dimensional covariate vector the scenario with correlated covariates was chosen,
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because for this scenario the values of the linearly weighted Kappa are higher. Therefore, we can

expect clearer trends in the Kappa values in dependency of the hyperparameter values. Finally,

the scenario with a smaller sample size was chosen for the scenario with correlated covariates,

because naturally the dependency of the results on the choices of the hyperparameter values can

be expected to be stronger for smaller sample sizes.

The following values were considered for the different hyperparameters:

• Bsets andBbestsets: all possible combinations ofBsets ∈ {500, 1000, 5000, 10000} andBbestsets ∈
{5, 10, 100, 1000} except for Bsets = 500 with Bbestsets = 1000 and Bsets = 1000 with

Bbestsets = 1000

• Bntreeprior: 10, 50, 100, 500, 1000

• Bntree: 500, 1000, 5000, 10000

• Nperm: 1, 100, 500, 1000

While varying the values of each hyperparameter all other hyperparameters were set to their

default values.

Supplementary Figures 45 and 46 show the results. In many cases the boxplots hardly vary

across the different values of the hyperparameters. The influence of the combination of Bsets and

Bbestsets and that of Bntreeprior is generally stronger than the influences of Bntree and Nperm.

For the combination of Bsets and Bbestsets (Supplementary Figure 45) the differences across

the results obtained for the various combinations of parameter values are stronger for the high-

dimensional setting than for the low-dimensional setting. For the latter, the only notable obser-

vation to be made is that for the smallest number of Bbestsets (i.e., Bbestsets = 5), the performance

tends to be slightly worse. In the case of the high-dimensional setting, the performance is clearly

worse for very high values of Bbestsets. For Bsets ∈ {5000, 10000} this deterioration is only seen

for Bbestsets = 1000 not for Bbestsets = 100, while for Bsets ∈ {500, 1000} the performance clearly

declines for Bbestsets = 100. This illustrates that for a large value of Bsets the results are less

sensitive to setting the value of Bbestsets overly large. For the high-dimensional setting the per-

formance is slightly better for Bsets = 1000 than for Bsets = 500, but there is no notable gain in

performance for higher values of Bsets than 1000. In both settings the combination of the default

values Bsets = 1000 and Bbestsets = 10 works well.

For both settings the performance is better for higher values of Bntreeprior, where there is no

notable further improvement for values higher than Bntreeprior = 100 (Supplementary Figure 46).

However, the influence of Bntreeprior is considerably stronger for the high-dimensional setting. This

can probably be explained by the fact that there is only a small percentage of influential variables

in the high-dimensional setting, which might not be selected frequently enough for a small number

of trees. Summarizing, for both settings the default value 100 for Bntreeprior was sufficiently high.

Nevertheless, for ultra-high-dimensional datasets Bntreeprior might have to be set even larger than

100 to warrant a sufficient accuracy of the scb values.

In the case of Bntree for both settings there are no notable differences between the Kappa

values obtained for 500, the lowest Bntree value considered and for 10000, the highest Bntree value

considered. Therefore, the default value Bntree = 5000 seems sufficient.
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The influence of the value of Nperm is marginal for both settings. We do not observe a better

performance for choosing the value of Nperm larger than one. Note however, that for both of the

considered settings the number of classes is only six. As J ! = 6! = 720 < 1000 = Bsets, the version

of the algorithm considered for generating the Bsets sets of class widths that does not involve Nperm

(see section A for details) would have been used as the default option in ordinalForest. For a

higher number of classes, choosing a sufficiently large value of Nperm might be more important.

Nevertheless, as we do not observe any notable differences between the results obtained for choosing

Nperm equal to one and that obtained for choosing Nperm larger than one, it can be assumed that

the value of Nperm does not have a strong influence on performance.
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Supplementary Figure 45: Values of linearly weighted Kappa obtained for different combinations
of Bsets values and Bbestsets values. Each boxplot shows the values obtained on the corresponding
test dataset for each of the 20 iterations of the simulation setting with “correlated n200”, equal
class widths, and “nclass = 6” (upper panel) and the simulation setting with “highdim”, equal
class widths, and “nclass = 6” (lower panel). The values of all other hyperparameters than Bsets

and Bbestsets were set to their default values (see second paragraph of section 3 of the main paper).
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Supplementary Figure 46: Values of linearly weighted Kappa obtained for different Bntreeprior

values (upper panels), Bntree values (middle panels), and Nperm values (lower panels). Each
boxplot shows the values obtained on the corresponding test dataset for each of the 20 iterations
of the simulation setting with “correlated n200”, equal class widths, and “nclass = 6” (left panels)
and the simulation setting with “highdim”, equal class widths, and “nclass = 6” (right panels).
In each case, the values of all other hyperparameters than the ones under investigation were set
to their default values (see second paragraph of section 3 of the main paper).
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