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A Simulation study comparing GE estimation with and without re-

specting the clustering structure: Full design and extensive results

A.1 Simulation design

As described in the main paper, the data were simulated according to the following model:

y(mi) =

5∑
l=1

βlx
(mi)
l + bm1 + bm2x

(mi)
1 + ϵ(mi),

where ϵ(mi) ∼ N (0, σ2), bm1 ∼ N (0, σ2
1), and bm2 ∼ N (0, σ2

2). Moreover, we set (β1, β2, β3, β4, β5)
T = (1, 1,−1, 0, 0)T .

We considered the following setting parameters:

� Number of clusters: N ∈ {10, 50}

� Number of observations per cluster: nm ∈ {5, 25}

� Cluster-specific means (yes vs. no): σ2
1 ∈ {1, 0}

� Cluster-specific influence of x1 (yes vs. no): σ2
2 ∈ {1, 0}

� Signal strength (strong vs. weak): σ2 ∈ {0.25, 1}

� Feature constant within clusters: none, x1, x2

By considering every possible combination out of these setting parameter values we investigated 96 simulation

settings in total (2× 2× 2× 2× 2× 3). For each setting we simulated 100 data sets.

A.2 Simulation results

The results obtained using linear models and random forests are shown in Supplementary Figures S1–S3 and

S4–S6, respectively. To avoid redundancy, we will primarily describe the results obtained using linear models and

highlight differences to the results obtained using random forests.

Supplementary Figures S1 and S4 show the results obtained for the settings without cluster-constant feature

values. As expected, for settings with cluster-specific means and effects (σ2
1 = σ2

2 = 0) there were no differences
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between the results obtained for standard and grouped CV (apart from small random fluctuations). For cluster-

specific means and effects, the MSE estimates were slightly larger for grouped CV, but only for N = 10, the smaller

of the two considered numbers of clusters. For smaller numbers of clusters the training data sets consisted of fewer

clusters, which is why the learned model was more strongly influenced by each individual cluster. This likely

explains why we only observed a difference in the results for the smaller considered number of clusters. There were

no notable differences in the results between the settings that consider cluster-specific means (σ2
1 = 1), cluster-

specific effects (σ2
2 = 1), and both, cluster-specific means and effects (σ2

1 = σ2
2 = 1). The number of observations

per cluster nm and the strength of the signal (controlled by σ2) had no notable influence on the results.
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Fig. S1: Simulation on clustered data: cross-validated MSE values of the linear models for each setting without
cluster-constant feature values. The orange and the blue boxplots indicate the results obtained for standard and
grouped CV, respectively.

For the linear models, the results obtained for the settings in which x1 or x2 were constant within clusters are

shown in Supplementary Figures S2 and S3, respectively. The same results for the random forests are shown in

Supplementary Figures S5 and S6. For both learners, we observed that the differences between the two CV variants

was stronger than for the settings without cluster-constant feature values. Beyond this commonality, there were,
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however, also quite strong differences in the results obtained for the two learners. In the case of the random forests,

the MSE estimates were considerably larger for grouped than for standard CV for almost all settings. Regarding

the linear models, the differences between the two CV variants were less pronounced and only seen for a subset

of the settings. Notable differences were only observed for settings with cluster-specific means and/or effects, and

only for N = 10.
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Fig. S2: Simulation on clustered data: cross-validated MSE values of the linear models for each setting for which
the x1 values were constant within clusters. The orange and the blue boxplots indicate the results obtained for
standard and grouped CV, respectively.
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Fig. S3: Simulation on clustered data: cross-validated MSE values of the linear models for each setting for which
the x2 values were constant within clusters. The orange and the blue boxplots indicate the results obtained for
standard and grouped CV, respectively.
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Fig. S4: Simulation on clustered data: cross-validated MSE values of the random forests without cluster-constant
feature values. The orange and the blue boxplots indicate the results obtained for standard and grouped CV,
respectively.
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Fig. S5: Simulation on clustered data: cross-validated MSE values of the random forests for which the x1 values
were constant within clusters. The orange and the blue boxplots indicate the results obtained for standard and
grouped CV, respectively.
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Fig. S6: Simulation on clustered data: cross-validated MSE values of the random forests for which the x2 values
were constant within clusters. The orange and the blue boxplots indicate the results obtained for standard and
grouped CV, respectively.
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B Simulation study comparing different approaches to GE estimation

under concept drift: Full design and extensive results

B.1 Simulation design

We simulated data according to the following model:

y(t) = β0(t) +

5∑
l=1

βlx
(t)
l + ϵ(t), t ∈ [0, 1], (1)

where x
(t)
l1

∼ N (µl1(t), 1) for l1 ∈ {1, 2, 3}, x
(t)
l2

∼ N (0, 1) for l2 ∈ {4, 5}, and ϵ(t) ∼ N (0, σ2(t)). We set

(β1, β2, β3, β4, β5)
T = (2,−1, 2, 0, 0)T . The time-dependent label mean β0(t) and variance σ2(t) of y(t) as well as

the time-dependent features means µ1(t), µ2(t), and µ3(t) depended linearly on t. This corresponds to a constant

degree of change in the distributions of y(t) and x
(t)
l1

(l1 ∈ {1, 2, 3}).
For the strength of the drifts in the distributions of y(t) and x

(t)
l1

(l1 ∈ {1, 2, 3}), that is, the label shift and the

feature shift, respectively, we considered four levels: “none”, “weak”, “medium-strong”, and “strong”. These are

characterized as follows:

� “None”: for all t ∈ [0, 1]: β0(t) = 0, σ2(t) = 1, µl1(t) = 0 for l1 ∈ {1, 2, 3}

� “Weak”: at the beginning, that is, for t = 0: β0(0) = 0, σ2(0) = 1, µl1(0) = 0 for l1 ∈ {1, 2, 3}; at the end,

that is, for t = 1: β0(1) = 2, σ2(1) = 2, µ1(1) = 2, µ2(1) = 1, µ3(1) = −2

� “Medium-strong”: at the beginning, that is, for t = 0: β0(0) = 0, σ2(0) = 1, µl1(0) = 0 for l1 ∈ {1, 2, 3}; at
the end, that is, for t = 1: β0(1) = 4, σ2(1) = 4, µ1(1) = 4, µ2(1) = 2, µ3(1) = −4

� “Strong”: at the beginning, that is, for t = 0: β0(0) = 0, σ2(0) = 1, µl1(0) = 0 for l1 ∈ {1, 2, 3}; at the end,

that is, for t = 1: β0(1) = 8, σ2(1) = 8, µ1(1) = 8, µ2(1) = 4, µ3(1) = −8

We divided the time span t ∈ [0, 1] into ten adjacent intervals of equal length. The first eight of these intervals,

hereafter referred to as “seasons”, represented the training data available to the analyst. Supplementary Figures S7

and S8 visualize the strengths of the feature and label drifts in the 10 seasons. After each of these seasons, the

analyst may re-train and/or re-validate models trained with these data. The last two seasons represented the

future for which predictions should be made using the final models trained on the first eight seasons, that is, on

the training data.

Each of the ntrain training samples, ntrain ∈ {100, 500, 1000, 3000}, was simulated at a different time ti, i ∈
{1, . . . , n}, where these times were placed equidistantly on the interval starting at zero and ending at the end of

the eighth season (i.e., t1 = 0, tn = 0.8).

The true prediction error (i.e., the GE) of the forecast was approximated at five different points in time: 1) the

end of the eighth season, 2) the middle of the ninth season, 3) the end of the ninth season, 4) the middle of the

tenth season, and 5) the end of the tenth season. At each of these time points, we generated a large test data

set of 2 · 105 observations (again using model (1)). To approximate the GEs at these time points, we trained the

model on the entire training data set and evaluated it on the large test data sets.

We compared the following methods for estimating the GE:

� k-fold CV : We used 8-fold CV, repeated ten times. The reason for choosing k = 8 in the CV was to obtain

the same fold sizes as in the time-series CV (see below). This procedure will be referred to as CV.

� Time-series CV/prequential evaluation: First, the data were split into k folds of (approximately) equal size

according to time. That is, the n/k observations that occurred first were placed in the first fold, the next

n/k observations were placed in the second fold, and so on. Second, the model was trained on the first fold

and evaluated on the second fold, then trained on the first two folds and evaluated on the third fold, then

trained on the first three folds and evaluated on the fourth fold, and so on. Finally, the k − 1 GE estimates

were averaged to obtain the final GE estimate. Choosing k = 8 had the effect that the folds coincided with
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the eight seasons in the training data. Since in each iteration of this procedure we are making predictions

for the next season after the respective training folds, this measures the GE to expect one season ahead after

training. However, as concept drift progresses, the GE will be higher further into the future if no retraining

is performed. To estimate the GE in the season after the next following training, we included a version of

the procedure in which we did not use the next but the next but one folds as validation folds. This and the

original version of the time-series CV will be referred to as CV2s and CV1s, respectively.

� Out-of-sample validation: This is a commonly used technique in time series forecasting (Bergmeir et al.,

2018). The data are split once into training and validation data, where all observations that occurred before

a certain point in time are placed in the training data and the rest in the validation data. We used the first

seven seasons for training and the eighth season for validation. It is also common to include a buffer zone

between the training and validation data when the interest is in estimating the GE to be expected further in

the future. We also included a variant where the first six seasons were used for training and the eighth season

for validation. The goal of this procedure was to estimate the GE to be expected in the season after next.

We will refer to this and the original variant as OOS2s and OOS1s, respectively. Out-of-sample validation

has the advantage over time-series CV that the validation data used are more similar in distribution to the

future data, which may lead to more realistic GE estimates.

We considered every possible combination of the four training set sizes, the four levels of feature shift, and the

four levels of label shift, resulting in a total of 64 simulation settings (4× 4× 4). We simulated 100 data sets for

each setting.

B.2 Results

Supplementary Figures S9–S12 and Supplementary Figures S13–S16 show the estimated and (approximated) true

MSE values obtained for linear models and random forests, respectively.

OOS1s is the only method that provided nearly unbiased GE estimates across all simulation settings. However,

in many cases, these GE estimates were unbiased only at the end of the training period, because the true GE

often increased quickly thereafter. Thus, OOS1s can only be used to obtain realistic GE estimates for the period

immediately following training, as the corresponding GE estimates are likely to be too optimistic for later time

points. A drawback of OOS1s is, however, that the variance of the GE estimates is quite large, especially for small

training set sizes. Also, in some cases the GE estimates were slightly pessimistic, which should, however, not

be a problem in most situations, since slightly pessimistic GE estimates are much generally less dangerous than

overoptimistic ones.

CV provided strongly overoptimistic performance estimates in most cases. More specifically, for the random

forests, it only provided (almost) unbiased GE estimates when there was no concept drift at all. For the linear

models, it provided unbiased GE estimates for settings with pure feature shift but no label shift. The latter

observation can be explained by the fact that the data were simulated using a linear model. When there is pure

feature drift and the data are simulated with a linear model, the GE does not (notably) increase after training

because the linear models fitted to the training data can extrapolate to regions of the feature space that are not

contained in the training data. In contrast, random forests are not suitable for making predictions for regions

outside the feature space observed in the training data. This is because random forests make predictions in these

regions that do not depend on the distance of the corresponding observations from those in the training data.

The GE estimates obtained with CV1s were only slightly less overoptimistic than those obtained with CV. In

particular, for moderate to strong label shift, the GE estimates obtained with CV1s tended to be much smaller than

the GEs at the end of the training period. Moreover, in contrast to CV, the GE estimates were notably pessimistic

in settings with no or weak concept drift. This can probably be explained by the fact that the training set sizes in

CV1s were generally much smaller than the entire training data set (on average only ntrain/2 observations).

CV2s behaved very similarly to CV1s, in particular it produced strongly overoptimistic estimates for the GE to

be expected in the tenth season in most cases.
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In many cases, OOS2s produced reasonable estimates of the GE to be expected at the beginning or middle of

the tenth season. Similar to OOS1s, the variance of OOS2s was quite high. This was especially true for smaller

training set sizes. More worryingly, unlike OOS1s, there were also many settings with strong label drift for which

OOS2s was associated with overoptimism, although the latter was not very strong. There were some differences

between the results obtained with linear models and random forests on this point.

In general, however, it is important not to over-interpret the details of the results obtained, as they likely

depended on the specific simulation design chosen. For example, for settings with moderate and strong label

shifts, the true and estimated errors became smaller for stronger feature shifts, which seems surprising. However,

it can be explained by considering the specific simulation design used. For settings with label shift, the intercept

β0(t) increased with t. Moreover, for settings with feature shift, β1x
(t)
1 + β2x

(t)
2 + β3x

(t)
3 had a slightly decreasing

trend with t because the positive and negative components β1x
(t)
1 and β3x

(t)
3 , respectively, canceled each other

out, and β2x
(t)
2 had a slightly decreasing trend with t. From the combination that β0(t) was increasing and

β1x
(t)
1 + β2x

(t)
2 + β3x

(t)
3 was decreasing, it follows that the linear predictor β0(t) + β1x

(t)
1 + β2x

(t)
2 + β3x

(t)
3 had a

smaller variance than in the settings without feature shift, because in the latter settings β1x
(t)
1 + β2x

(t)
2 + β3x

(t)
3

had no decreasing trend. From this we can see that in the subset of settings with label shift, the variance of y(t)

was smaller for settings with feature drift. This finally explains why the true and estimated prediction errors were

smaller in these settings. When there was no label shift, the variance of β0(t) + β1x
(t)
1 + β2x

(t)
2 + β3x

(t)
3 was not

smaller for settings with than without feature shift, and thus the prediction errors were not smaller either.

B.3 Conclusions

CV and time-series CV produce over-optimistic GE estimates in the presence of concept drift. Out-of-sample

validation using OOS1s produce largely unbiased GE estimates for the immediate post-training period. However,

the GE of a trained model can increase quite rapidly after the training period, which is why it is important to

re-train frequently and re-estimate the GE with OOS1s. Using OOS2s, the GE in the slightly more distant future can

be realistically estimated in many cases, but in some settings we observed over-optimistic GE estimates, although

this over-optimism was not very strong. OOS1s and OOS2s is associated with quite a large variance, especially for

small training set sizes, which is why in general it seems difficult to realistically estimate the GE for small data

sets.

Note that it is not very surprising that OOS1s had the lowest bias, since with this procedure the training data

is very similar to the entire data set on which the final model is fitted, and the test data, being at the end of the

training period, is very similar to the next observations after the training period. This is also the case for other

forms of concept drift beyond the incremental drift examined in the simulation, such as abrupt drift, which is why

OOS1s should work well for these types of drift as well.
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Fig. S7: Visualization of the feature drift. The grey dashed lines show the baseline distribution of the features at

the beginning of season 1. The red, green, and blue solid lines show the distributions of the features x
(t)
1 , x

(t)
2 , and

x
(t)
3 , respectively, in the middles of the respective seasons.
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Fig. S9: Simulation on concept drift: estimated and (approximated) true MSE values of the linear models for the
settings without feature shift. The orange and blue boxplots show the estimated and true MSE values, respectively.
Els, M1fus, E1fus, M2fus, and E2fus indicate the true errors at the end of the eighth season, the middle and end
of the ninth season, and the middle and end of the tenth season, respectively.
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Fig. S10: Simulation on concept drift: estimated and (approximated) true MSE values of the linear models for
the settings with weak feature shift. The orange and blue boxplots show the estimated and true MSE values,
respectively. Els, M1fus, E1fus, M2fus, and E2fus indicate the true errors at the end of the eighth season, the
middle and end of the ninth season, and the middle and end of the tenth season, respectively.

15



n = 3000

no label shift

n = 3000

weak label shift

n = 3000

medium−strong label shift

n = 3000

strong label shift

n = 1000

no label shift

n = 1000

weak label shift

n = 1000

medium−strong label shift

n = 1000

strong label shift

n = 500

no label shift

n = 500

weak label shift

n = 500

medium−strong label shift

n = 500

strong label shift

n = 100

no label shift

n = 100

weak label shift

n = 100

medium−strong label shift

n = 100

strong label shift

CV
CV1s

OOS1s Els

M
1f

us

E1f
us
CV2s

OOS2s

E1f
us

M
2f

us

E2f
us CV

CV1s

OOS1s Els

M
1f

us

E1f
us
CV2s

OOS2s

E1f
us

M
2f

us

E2f
us CV

CV1s

OOS1s Els

M
1f

us

E1f
us
CV2s

OOS2s

E1f
us

M
2f

us

E2f
us CV

CV1s

OOS1s Els

M
1f

us

E1f
us
CV2s

OOS2s

E1f
us

M
2f

us

E2f
us

5

10

15

20

6

9

12

6

8

10

12

6

8

10

12

2.5

5.0

7.5

2

3

4

5

6

3

4

5

3

4

5

2

4

6

1

2

3

1.6

2.0

2.4

1.4

1.6

1.8

2.0

2.2

2.4

1

2

3

0.75

1.00

1.25

1.50

0.8

1.0

1.2

1.4

0.8

0.9

1.0

1.1

E
st

im
at

ed
 a

nd
 tr

ue
 M

S
E

 v
al

ue
s

Fig. S11: Simulation on concept drift: estimated and (approximated) true MSE values of the linear models for
the settings with medium-strong feature shift. The orange and blue boxplots show the estimated and true MSE
values, respectively. Els, M1fus, E1fus, M2fus, and E2fus indicate the true errors at the end of the eighth season,
the middle and end of the ninth season, and the middle and end of the tenth season, respectively.
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Fig. S12: Simulation on concept drift: estimated and (approximated) true MSE values of the linear models for
the settings with strong feature shift. The orange and blue boxplots show the estimated and true MSE values,
respectively. Els, M1fus, E1fus, M2fus, and E2fus indicate the true errors at the end of the eighth season, the
middle and end of the ninth season, and the middle and end of the tenth season, respectively.
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Fig. S13: Simulation on concept drift: estimated and (approximated) true MSE values of the random forests
for the settings without feature shift. The orange and blue boxplots show the estimated and true MSE values,
respectively. Els, M1fus, E1fus, M2fus, and E2fus indicate the true errors at the end of the eighth season, the
middle and end of the ninth season, and the middle and end of the tenth season, respectively.
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Fig. S14: Simulation on concept drift: estimated and (approximated) true MSE values of the random forests for
the settings with weak feature shift. The orange and blue boxplots show the estimated and true MSE values,
respectively. Els, M1fus, E1fus, M2fus, and E2fus indicate the true errors at the end of the eighth season, the
middle and end of the ninth season, and the middle and end of the tenth season, respectively.
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Fig. S15: Simulation on concept drift: estimated and (approximated) true MSE values of the random forests for
the settings with medium-strong feature shift. The orange and blue boxplots show the estimated and true MSE
values, respectively. Els, M1fus, E1fus, M2fus, and E2fus indicate the true errors at the end of the eighth season,
the middle and end of the ninth season, and the middle and end of the tenth season, respectively.
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Fig. S16: Simulation on concept drift: estimated and (approximated) true MSE values of the random forests for
the settings with strong feature shift. The orange and blue boxplots show the estimated and true MSE values,
respectively. Els, M1fus, E1fus, M2fus, and E2fus indicate the true errors at the end of the eighth season, the
middle and end of the ninth season, and the middle and end of the tenth season, respectively.
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C Simulation study comparing stratified with non-stratified CV for

hierarchical classification problems: Full design and extensive re-

sults

C.1 Simulation design

C.1.1 General proceeding

We compared standard CV with stratified CV (SCV) with respect to their performance in estimating the following

nine evaluation metrics: accuracy (acc), micro-averaged / macro-averaged hierarchical precision (hierpr micro

/ hierpr macro), micro-averaged / macro-averaged hierarchical recall (hierre micro / hierre macro), micro-

averaged / macro-averaged hierarchical F1 score (hierf micro / hierf macro), weighted shortest path loss measure

(spath), H-loss (hloss). More precisely, we performed (stratified) 5-fold CV, repeated ten times. As a classifier,

we used top-down hierarchical classification (see e.g. Naik and Rangwala (2018)) with random forests as local

classifiers, implemented in our R package hierclass available on GitHub (version 0.1.0, link: http://github.

com/RomanHornung/hierclass). For each random forest, we constructed 500 trees.

In each simulate repetition, we simulated a training data set Dtrain of size ntrain and a very large test data set

Dtest of size ntest = 200, 000. Subsequently, first, the evaluation metric values were estimated using (stratified) CV

on Dtrain. Second, the classifier was trained on Dtrain and the true values of the evaluation metrics approximated

using Dtest.

We considered four training set sizes ntrain ∈ {200, 500, 1000, 3000} and performed 100 simulation repetitions

for each of these.

C.1.2 Data-generating process

Supplementary Figure S17 shows the category tree used in the simulation. Each node in this tree was simulated

to have two child nodes with probability 2/3 and three child nodes with probability 1/3. We randomly generated

category trees until we obtained a tree with exactly 50 leaf nodes, which is the tree shown in Supplementary

Figure S17.

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

9 10 11 12 13 14 15 16 17 18

4 5 6 7 8

2 3

1

Fig. S17: Category tree used in the simulations study.

There were five features x(i) = (x
(i)
1 , . . . , x

(i)
5 )T , which were all drawn from N (0, 1). To assign the hierarchical

classes to the observations, the latter were dropped down the category tree, where in each node a multinomial

logistic regression model was used to decide for the next child node in the tree hierarchy:

πm1i =
1

1 +
cm∑
s=2

exp(βsm0 + x(i)Tβsm)

, πmri =
βrm0 + exp(x(i)Tβrm)

1 +
cm∑
s=2

exp(βsm0 + x(i)Tβsm)

, r ∈ {2, 3}.

Here, πmri, r ∈ {1, 2, 3} denotes the probability that observation i is assigned to the r-th child node and m indexes

the current node. Note that this description applies to nodes with three child nodes, but the case of two child nodes

was very similar with the only difference being that r ∈ {1, 2}. The parameters βrm0 and βrm = (βrm1, . . . , βrm5)
T ,
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r ∈ {2, 3}, were sampled as follows:

βrm0 ∼ N (0, 1), βrmj ∼ N (0, σ2
l ), r ∈ {2, 3}, j ∈ {1, . . . , 5}.

Here, the variance σ2
l of the feature coefficients is indexed by the layer l of the node. These values were set as

follows: σ2
1 := 2.5, σ2

2 := 2, σ2
3 := 0.9, σ2

4 := 0.7, and σ2
5 := 0.5. Choosing smaller values of σ2

l for lower layers in

the category tree had the effect or reducing the influence of the input features in lower layers. This in turn made

the data in the child nodes more similar in lower layers, which is a common feature of hierarchical classification

problems.

In each simulation repetition, we first generated the parameter values βrm0 and βrm for all nodes in the category

tree. Subsequently, using these parameter values we simulated the training data set Dtrain and the test data set

Dtest.

C.2 Results

Supplementary Figure S18 shows the estimated and true evaluation metric values. As expected, for most evaluation

metrics the performance got better with larger training set sizes. Exceptions are the macro-averaged metrics,

where only the true performance got better with larger training set sizes and even here only for hierre macro and

hierf macro, but not hierpr macro.

One striking observation to be made is that, for ntrain = 200, both CV versions severely overestimated the

true hierre macro values. Important reasons for this over-optimism are the facts that smaller classes tended to

receive much worse class-specific hierarchical recall values and that (stratified) CV implicitly assigned less weight

to smaller classes in the estimation of the hierre macro. The reason why small classes tended to receive much

worse class-specific hierarchical recall values was that many prediction methods, random forests in particular, have

a strong tendency towards predicting larger classes. And the reason why CV implicitly assigned less weight to

smaller classes in the estimation of hierre macro was that small classes frequently did not occur in the test folds

in CV, in which cases these classes were not included in the estimation of the hierre macro values on these test

folds. This mechanism took effect for SCV as well even though here the folds were balanced with respect to the

class distributions. This is because, for ntrain = 200, small classes often only featured very few observations (< 5),

which had the effect that only a subset of the folds featured these classes. Another reason for the large discrepancy

between estimated and true hierre macro values was that, for ntrain = 200, many small classes did not even occur

in the training sets and these classes naturally tend to receive very bad class-specific hierarchical recall values in

the approximation of the true hierre macro values.

We observed much less over-optimism for estimating the true hierpr macro values. There are several reasons for

this. First, given the strong tendency of random forests to predict larger classes, many of the smallest classes were

not predicted at all, even on the huge test sets (ntest = 200, 000) used for approximating the true hierpr macro

values (results not shown), which is why the true hierpr macro values were less influenced negatively by the

smallest classes. Second, given the definition of hierpr macro, in contrast to in the case of hierre macro, no

classes that did not occur in the training sets were considered in the class-specific hierarchical precision values in

the approximation of the true values for hierpr macro. This also had the effect that small classes that did not

occur in the training sets did not negatively influence the approximated true hierpr macro values. Lastly, the

class-specific hierarchical precision values tended to be less worse for small classes compared to in the cases of the

class-specific hierarchical recall values. This is because, in cases in which prediction rules predicted small classes,

the chance that the predicted class was actually the true class was relatively high. The latter was a result of the

fact that prediction rules predict small classes rarely, which is why in cases in which they do predict small classes,

there tends to be quite much evidence for the predicted class. The over-optimism observed for hierf macro can

be explained by the fact that the latter is the harmonic mean of hierre macro and hierpr macro.

Supplementary Figure S19 shows the (standardized) differences between the evaluation metrics estimates and

their true values. As already seen in Supplementary Figure S18 these differences tended to be relatively small with

the exception of in the cases of the macro-averaged metrics and the smallest training set size ntrain = 200. For

23



hierf_macro spath hloss

hierre_micro hierre_macro hierf_micro

acc hierpr_micro hierpr_macro

200 500 1000 3000 200 500 1000 3000 200 500 1000 3000

0.3

0.4

0.5

0.35

0.40

0.45

0.50

0.55

0.60

0.30

0.35

0.40

0.45

0.35

0.40

0.45

0.50

0.55

0.60

0.25

0.30

0.35

0.40

0.45

0.50

1.6

2.0

2.4

0.2

0.3

0.4

0.35

0.40

0.45

0.50

0.55

0.60

0.30

0.35

0.40

0.45

0.50

n

E
va

lu
at

io
n 

m
et

ric
 v

al
ue

s

Fig. S18: Simulation on hierarchical classification: estimated and (approximated) true evaluation metric values.
The red and green boxplots show the metric values obtained using CV and SCV, respectively, and the blue boxplots
show the true metric values approximated using the very large test data sets. The grey lines connect the results
obtained using the same simulation repetitions.

the latter, SCV tended to overestimate the true performance, while CV tended to underestimate it. There were

no notable differences in terms of the variance of the estimates between the two CV variants. One reason for the

underestimation of the performance observable for CV was the well-known inherent bias of CV. The latter is due

to the training set sizes used during CV being smaller than the whole data set, which is used for training the final

classifier. Note, however, that SCV was subject to this bias as well. Another likely reason for the underestimation,

that is, however, specific to CV is that, for ntrain = 200, the differences in class distributions between training

and test folds were frequently quite strong. If a class was over-proportionally frequent in the test fold, it was

under-proportionally frequent in the training fold and vice versa. As stated above, prediction methods, random

forests in particular, favor larger classes, which is why the prediction performance on larger classes dominated

the prediction performance estimates. If many observations of a large class were in the test fold, there were few

observations in the training fold. In this case, the classifier learned on the training fold was likely not able to
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predict the class well. If so, this contributed to a bad estimated predictive performance because many observations

from this class were in the test fold. In contrast, if few observations from a large class were in the test fold and

many in the training fold, the learned classifier was likely able to predict the observations from this class well in

the test fold. However, if this was the case, it did not have a strong positive influence on the estimated predictive

performance because there were only few observations from that class in the test fold in that situation.

For SCV, the folds are balanced with respect to the class distribution. Therefore, the classifiers learned within

SCV can be expected to feature similar performance. One reason for the observation that the estimated evaluation

metrics were more optimistic than the approximated true evaluation metrics was that for ntrain = 200 many classes

were contained only in the test data sets used for approximating the true values of the evaluation metrics. This was

expected and not an issue with the SCV procedure because a classifier generally performs bad on unseen classes.

However, even when including in the test data only observations from classes that were contained in the training

data, SCV still overestimated the true performance, albeit less strongly and not for all evaluation metrics (results

not shown). This was likely related to the fact that, for ntrain = 200, the class distribution in the training data

could differ from the class distribution in the test data through random fluctuations. With SCV, however, the class

distributions in the test folds were made artificially equal to those in the training folds. This likely contributed to

the observation that SCV results in over-optimistic performance estimates for ntrain = 200.

For larger training set sizes, the bias associated with SCV tended to be lower than that associated with CV. For

the macro-averaged metrics hierpr macro and hierf macro, both CV variants were associated with some level of

over-optimism even for the largest training set size ntrain = 3000. However, for most evaluation metrics SCV was

associated with no notable bias for larger training set sizes, whereas the bias of CV prevailed in this range. For

the largest training set size ntrain = 3000, SCV was also associated with slight optimistic bias for most evaluation

metrics, which might have been due to the inherent bias of CV. However, for ntrain = 3000 the bias was negligible

for both CV variants.

In summary, for very small training set sizes, SCV seems to be associated with a slight over-optimistic bias

and CV with a slight pessimistic bias. For larger training set sizes SCV, in contrast to CV, seems to be associated

with no notable bias. However, the bias of CV tends to become smaller for larger training set sizes. In terms of

the variance of the estimation, there were no notable differences between the two CV variants.
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Fig. S19: Simulation on hierarchical classification: differences between estimated and true evaluation metric values
divided by true values. The orange and the blue boxplots indicate the results obtained when using CV and SCV,
respectively.
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