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Colorectal cancer (CRC) is a frequently lethal disease with 
heterogeneous outcomes and drug responses. To resolve 
inconsistencies among the reported gene expression–based 
CRC classifications and facilitate clinical translation,  
we formed an international consortium dedicated to  
large-scale data sharing and analytics across expert groups.  
We show marked interconnectivity between six independent 
classification systems coalescing into four consensus 
molecular subtypes (CMSs) with distinguishing features:  
CMS1 (microsatellite instability immune, 14%), hypermutated, 
microsatellite unstable and strong immune activation;  
CMS2 (canonical, 37%), epithelial, marked WNT and  
MYC signaling activation; CMS3 (metabolic, 13%), 
epithelial and evident metabolic dysregulation; and CMS4 
(mesenchymal, 23%), prominent transforming growth  
factor– activation, stromal invasion and angiogenesis. 
Samples with mixed features (13%) possibly represent  
a transition phenotype or intratumoral heterogeneity.  
We consider the CMS groups the most robust classification 
system currently available for CRC—with clear biological 
interpretability—and the basis for future clinical stratification 
and subtype-based targeted interventions.

Gene expression–based subtyping is widely accepted as a relevant 
source of disease stratification1. Despite the technique’s widespread 
use, its translational and clinical utility is hampered by discrepant 
results, which are probably related to differences in data process-
ing and algorithms applied to diverse patient cohorts, sample prepa-
ration methods and gene expression platforms. In the absence of a 
clear methodological ‘gold standard’ to perform such analyses, a more  
general framework that integrates and compares multiple strategies is 
needed to define common disease patterns in a principled, unbiased 
manner. Here we describe such a framework and its application to 
elucidate the intrinsic subtypes of CRC.

Inspection of the published gene expression–based CRC classifi-
cations2–9 revealed only superficial similarities. For example, all of 
the groups identified one tumor subtype enriched for microsatellite 
instability (MSI) and one subtype characterized by high expression 
of mesenchymal genes, but they failed to achieve full consistency 
among the other subtypes. We envisioned that a comprehensive cross- 
comparison of subtype assignments obtained by the various 
approaches on a common set of samples could resolve inconsistencies 
in both the number and the interpretation of CRC subtypes. The CRC 
Subtyping Consortium (CRCSC) was formed to assess the presence 
or absence of core subtype patterns among existing gene expression–
based CRC subtyping algorithms. Recognizing that transcriptomics  
represents the level of high-throughput molecular data that is  
most intimately linked to cellular or tumor phenotype and clinical 
behavior, we also wanted to characterize the key biological features 
of the core subtypes, integrate and confront all other available data 
sources (mutation, copy number, methylation, microRNA and pro-
teomics) and assess whether the subtype assignment correlated with 
patient outcome. Furthermore, our aim was to establish an important 
paradigm for collaborative, community-based cancer subtyping that 
will facilitate the translation of molecular subtypes into the clinic, not 
only for CRC but for other malignancies as well.

RESULTS
Comparison of published molecular subtyping platforms
We evaluated the results of six CRC subtyping algorithms3–8, each 
developed independently using different gene expression data sets 
and analytical approaches (Supplementary Tables 1 and 2). Figure 1  
summarizes the workflow of our analysis. A total of 18 CRC data 
sets (n = 4,151 patients) from both public (GSE42284, GSE33113, 
GSE39582, GSE35896, GSE13067, GSE13294, GSE14333, GSE17536, 
GSE20916, GSE2109 and The Cancer Genome Atlas (TCGA)) and 
proprietary3,10 sources (Supplementary Table 3)—which consisted 
of multiple gene expression platforms (Affymetrix, Agilent and 
RNA-sequencing), sample types (fresh-frozen samples and forma-
lin-fixed paraffin-embedded (FFPE) samples) and study designs 
(retrospective and prospective series and one clinical trial10)—were 
uniformly preprocessed and normalized from the raw formats  
to reduce technical variation. The six expert groups applied their  
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subtyping classification algorithm to each of the 
data sets separately to ensure correct method 
utilization and interpretation of results.  
The output of this workflow was six different 
subtype labels per sample.

We developed a network-based approach 
to study the association among the six CRC 
classification systems, each consisting of three 
to six subtypes and collectively numbering 
27 unique subtype labels. In this association 
network, nodes corresponded to the union 
of all group subtypes (n = 27), and weighted 
edges encoded the Jaccard similarity coef-
ficients between nodes. We then applied a 
Markov cluster (MCL) algorithm11,12 to this 
network to detect the presence of robust 
network substructures that would indicate 
recurring subtype patterns. During network 
clustering using MCL, network granularity is 
controlled by the inflation factor f, which is 
associated with the number of clusters11,12. 
For varying inflation factors, we compared 
the corresponding clustering performances 
using ‘weighted silhouette width’ (Online Methods). Using the opti-
mal inflation factor (Supplementary Fig. 1), we identified four robust 
consensus molecular subtypes (CMSs) with significant interconnec-
tivity (P < 0.001, hypergeometric test) among the six independent clas-
sification systems (Fig. 2a,b). The network-based approach revealed a 
set of core consensus samples, i.e., tumors representative of each CMS 
(3,104 of 3,962 samples; 78%) with a high concordance in subtype 
labels among the groups (P < 0.05, hypergeometric test). The remain-
ing unlabeled (non-consensus) samples, which did not have a con-
sistent pattern of subtype label association, represented a substantial 
proportion of primary tumors (n = 858; 22%) (Fig. 2b). Notably, these 
samples were distributed across all data sets (Supplementary Fig. 2). 
In addition, visualization of the global patient network revealed that 
non-consensus samples remained scattered between the four large 
primary modules (Fig. 2c).

Consensus molecular subtype classification
Using the CMS labels of the core consensus samples as a gold stand-
ard, we developed a novel classification framework for predicting 
CMS subtypes using aggregated gene expression data from all of the 
cohorts (Online Methods). CMS-labeled samples were split into two 
equal partitions for training and validation, and a random forest clas-
sifier was generated from 500 balanced bootstraps of the training 
data. When applied to the validation data, the classifier demonstrated 
robust performance across gene expression platforms (Affymetrix, 
Agilent and RNA-sequencing) and sample collections (FFPE and 

fresh-frozen), with a >90% balanced accuracy across all subtypes 
(Supplementary Table 4 and Supplementary Fig. 3). This corrobo-
rates both the portability of the classifier and the evident subtype-
specific signals across data sets.

The CMS classifier allowed characterization of the originally unla-
beled samples from network analysis (n = 858). Using a conserva-
tive posterior probability threshold with high specificity (Online 
Methods), we were able to assign 40% of these samples (n = 339) to a 
single subtype (Supplementary Fig. 4), and the remaining unclassified 
samples (n = 519; 13% of the overall population) had heterogeneous  
patterns of CMS mixtures (Supplementary Fig. 5). We confirmed 
that ‘mixed’ samples were not outliers and did not represent a fifth 
independent subtype (Supplementary Fig. 5), although the quality 
of gene expression data could have affected a small subset of samples 
(Online Methods). The final distribution of the CMS groups is shown 
in Figure 2d, including the ‘mixed or indeterminate’ samples.

Biological characterization of the consensus molecular subtypes
We studied additional molecular data that were available for a subset 
of the samples in our cohort (Supplementary Table 3) to deline-
ate the biological characteristics of each CMS group. With respect 
to genomic aberrations (Fig. 3), CMS1 samples were hypermutated 
and had low prevalence of somatic copy number alterations (SCNAs)  
(Fig. 3a–c,e and Supplementary Tables 5 and 6). CMS1 encom-
passed the majority of MSI tumors and had overexpression of pro-
teins involved in DNA damage repair, as determined by reverse-phase  
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Figure 1 Analytical workflow of the Colorectal 
Cancer Subtyping Consortium. (a) Subtype 
classification on 18 shared data sets across 
six groups. (b) Concordance analysis of the 
six subtyping platforms and application of a 
network analytical method to identify consensus 
subtype clusters. (c) Development of a 
consensus subtype classifier from an aggregated 
gene expression data set and the consensus 
subtype labels. (d) Biological and clinical 
characterization of the consensus subtypes.
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protein array (RPPA) analysis, consistent with defective DNA mismatch 
repair (Supplementary Table 7). As expected, the analysis of meth-
ylation profiles in TCGA showed that CMS1 tumors display a wide-
spread hypermethylation status (Fig. 3f and Supplementary Fig. 6).  
Conversely, CMS2–CMS4 displayed higher chromosomal instability 
(CIN), as measured by SCNA counts (Fig. 3b and Supplementary 
Table 5). We detected more frequent copy number gains in onco-
genes and copy number losses in tumor suppressor genes in CMS2 
than in the other subtypes (Supplementary Table 6). Notably, CMS3 
samples had a distinctive global genomic and epigenomic profile as 
compared to the other CIN tumors: (i) there were consistently fewer 
SCNAs (Fig. 3b,c,e and Supplementary Table 5), an association not 
explained by differences in tumor purity (Supplementary Fig. 7 and 
Supplementary Table 5); (ii) nearly 30% of the samples were hyper-
mutated (Fig. 3c and Supplementary Table 5), which overlapped 
with MSI status (Supplementary Fig. 7); and (iii) there was a higher 
prevalence of CpG island methylator phenotype (CIMP)-low clusters 
in TCGA samples (Fig. 3c and Supplementary Table 5), with inter-
mediate levels of gene hypermethylation (Fig. 3f).

Next we sought to identify mutations that specifically associate 
with the CMS groups. Although we found clear enrichment of certain  
mutations within subtypes (Fig. 3d and Supplementary Tables 5  
and 8), such as the frequent occurrence of BRAF mutations in CMS1 
(in line with the known association of this event with MSI tumors2) 
and the overrepresentation of KRAS mutations in CMS3, none of the 
subtypes was defined by an individual event, and no genetic aberration 
was limited to a subtype. Similarly, we detected no unique and recur-
rent SCNA that strongly associated with a subtype, although ampli-
fications of the gene encoding the transcription factor HNF4A were 
enriched in CMS2 (Supplementary Tables 5 and 6). Because single 
genomic aberrations do not clearly delineate the CMS groups, we per-
formed an integrative analysis of mutations and copy number events 
using TCGA data to find signal transduction cascades that might 
underlie the biology of the various subtypes. Apart from the nearly 
universal genetic activation of the receptor tyrosine kinase (RTK) 

and mitogen-activated protein kinase (MAPK) pathways in CMS1 
and CMS3, no specific associations were identified (Supplementary 
Fig. 7 and Supplementary Table 5). This supports the notion that 
tumors harboring commonly assumed driver events in CRC still vary 
markedly in their biology and highlights the very poor genotype-
phenotype correlations in this disease.

We then focused on the gene expression data and performed gene 
set enrichment analysis using previously described signatures of path-
way activity and well-characterized cellular processes. These analyses 
provided substantial insight into the biological understanding of the 
CMS groups (Fig. 3i and Supplementary Table 9). CMS1 is char-
acterized by increased expression of genes associated with a diffuse 
immune infiltrate, mainly composed of TH1 and cytotoxic T cells, 
along with strong activation of immune evasion pathways, an emerg-
ing feature of MSI CRC13 (Fig. 3i and Supplementary Table 9). CMS2 
tumors displayed epithelial differentiation and strong upregulation of 
WNT and MYC downstream targets, both of which have classically 
been implicated in CRC carcinogenesis (Fig. 3i and Supplementary 
Table 9). In contrast, enrichment for multiple metabolism signatures 
was found in CMS3 epithelial CRCs, in line with the occurrence of 
KRAS-activating mutations that have been described as inducing 
prominent metabolic adaptation14–17 (Fig. 3i and Supplementary 
Table 9). Of note, CMS3 tumors displayed similarities with a ‘meta-
bolic’, genomically stable subtype that was recently described in gas-
tric cancer18,19. Finally, CMS4 tumors showed clear upregulation of 
genes implicated in epithelial-to-mesenchymal transition (EMT) and 
of signatures associated with the activation of transforming growth 
factor (TGF)-β signaling, angiogenesis, matrix remodeling path-
ways and the complement-mediated inflammatory system (Fig. 3i 
and Supplementary Table 9). In addition, CMS4 samples exhibited 
a gene expression profile compatible with stromal infiltration (Fig. 3i 
and Supplementary Table 9), overexpression of extracellular matrix 
proteins using RPPA analysis (Supplementary Table 7) and higher 
admixture with non-cancer cells, as measured by the ABSOLUTE 
algorithm20 (Supplementary Fig. 7 and Supplementary Table 5).
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Figure 2 Identification of the consensus subtypes of colorectal cancer and application of classification framework in non-consensus samples.  
(a) Network of CRC subtypes across six classification systems: each node corresponds to a single subtype (colored according to group) and edge width 
corresponds to the Jaccard similarity coefficient. The four primary clusters, identified from the Markov cluster algorithm, are highlighted and correspond 
to the four CMS groups. (b) Per sample distribution of each of the six CRC subtyping systems (A–F), grouped by the four consensus subtyping clusters  
(n = 3,104), and the unlabeled non-consensus set of samples (n = 858). Colors within each row represent a different subtype. The n values shown in b  
correspond to the number of subtypes in the original independent classification published by each group. (c) Patient network: each node represents 
a single patient sample (n = 3,962). Network edges correspond to highly concordant (5 of 6) subtyping calls between samples. Nodes are colored 
according to their CMSs, with non-consensus samples in gray. (d) Final distribution of the CMS1–4 groups (solid colors), ‘mixed’ samples (gradient 
colors) and indeterminate samples (gray color) as per the classification framework.
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To assess whether gene expression–based subtypes are recapitulated at 
the protein level, we compared our CMS groups with the recently char-
acterized proteomic clusters in TCGA samples (n = 81) (ref. 21). We 
observed a partial concordance between the two classification systems 
and could describe an approximate mapping between the subtype groups 
(Supplementary Table 10). In a supervised analysis (Fig. 3g), CMS1 
tumors showed upregulation of proteins involved in immune response 
pathways, whereas CMS4 samples had significant overexpression of 
proteins implicated in stromal invasion, mesenchymal activation and 
complement pathways (Fig. 3j and Supplementary Table 11).

To interrogate post-transcriptional regulation of gene expression 
across CMS groups, we performed supervised microRNA (miR) 
analysis and identified significant subtype-specific miR regulation  

changes (Fig. 3h, Supplementary Fig. 8 and Supplementary Table 12).  
Of particular note, CMS2 tumors showed upregulation of the  
miR-17–92 cluster (a direct transcriptional target of MYC22) and 
CMS3 samples had low expression of the let-7 miR family (which is 
accompanied by high KRAS expression levels), whereas the miR-200 
family (previously implicated in regulation of EMT)23,24 showed clear 
downregulation in CMS4.

Finally, we also compared gene expression patterns of CRC tumors 
with (i) adjacent normal colon tissue from patients with colon cancer 
(n = 19) and (ii) left colon (splenic flexure, descending and sigmoid 
colon) tissue from cancer-free individuals (n = 64) (Online Methods). 
Global principal component analysis (PCA) revealed that normal sam-
ples were clearly differentiated from tumor samples in both cohorts 
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Figure 3 Molecular associations of consensus molecular subtype groups. (a,b) Distribution of nonsynonymous somatic mutation events (n = 337) 
(a) and SCNAs (n = 494; defined as nonzero GISTIC (genomic identification of significant targets in cancer) scores in the TCGA data set) (b), across 
consensus subtype samples (median, lower and upper quartiles; horizontal lines define minimum and maximum; dots define outliers). (c) Key  
genomic and epigenomic markers, with darker brown representing positivity for SCNA high (≥Q1 for non-zero GISTIC score events; n = 494), 
hypermutation (≥180 events in exome sequencing; n = 337), MSI high (n = 2,176) or CIMP-cluster high (n = 427). (d) Mutation profile, with darker 
gray representing positivity for KRAS (n = 2,224), BRAF (n = 1,941), APC (n = 393) and TP53 (n = 801) mutations. (e) Heat map of copy number 
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expressed proteins in TCGA, colored with a gradient from blue (low expression) to yellow (high expression) (n = 81). (h) Heat map of top differentially 
expressed microRNAs in TCGA, with shades of blue for downregulation and orange for upregulation (n = 397). (i) Gene set mRNA enrichment analysis 
showing signatures of special interest in CRC, including canonical pathways, immune signatures, immune and stromal cell admixture in tumor samples 
(inferred by the ESTIMATE algorithm30) and metabolic pathways (n = 3,301). (j) Gene set enrichment analysis of proteomic TCGA data (n = 81). 
Detailed statistics are in Supplementary Tables 5,8,9 and 11.
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(Supplementary Fig. 9). Although CMS3 tumors appeared more 
‘normal’-like at the gene expression level (Supplementary Fig. 9),  
we did not find greater contamination with non-cancer tissue in 
tumors of the CMS3 group as compared to tumors from the other 
consensus subtypes after pathological review of a subset of sam-
ples from the PETACC-3 clinical trial10 as well as an assessment of 
ABSOLUTE tumor purity scores in TCGA data (Supplementary  
Fig. 7 and Supplementary Table 5).

Clinical and prognostic associations of the consensus  
molecular subtypes
We also found important associations between the CMS groups 
and clinical variables (Fig. 4 and Supplementary Table 5). CMS1 
tumors were frequently diagnosed in females with right-sided lesions 
(Fig. 4a,b, Supplementary Fig. 10 and Supplementary Table 5) 
and presented with higher histopathological grade (Fig. 4d and 
Supplementary Table 5). Conversely, CMS2 tumors were mainly left-
sided (Fig. 4b, Supplementary Fig. 10 and Supplementary Table 5),  
whereas CMS4 tumors tended to be diagnosed at more advanced 
stages (III and IV) (Fig. 4c and Supplementary Table 5). To deter-
mine whether the CMS groups differed in outcome, we performed 
a Cox proportional hazards analysis on the combined data sets and 
separately in the subset of patients enrolled in a clinical trial with uni-
form follow-up (PETACC-3 clinical trial10) (Supplementary Fig. 11  
and Supplementary Table 13). Irrespective of patient cohort, CMS4 
tumors resulted in worse overall survival (Fig. 4e) and worse relapse-
free survival (Fig. 4f) in both univariate and multivariate analyses, 
after adjustment for clinico-pathological features, MSI status and pres-
ence of BRAF or KRAS mutations (Supplementary Table 13). We also 
found superior survival rates after relapse in CMS2 patients (Fig. 4g), 
with a larger proportion of long-term survivors in this subset. Notably, 
the CMS1 population had a very poor survival rate after relapse 
(Fig. 4g), in agreement with recent studies showing worse progno-
sis of patients with MSI and BRAF-mutated CRCs that recur25–27.  

These differences in prognosis with unsupervised gene expression 
signatures confirm the clinical relevance of the intrinsic biological 
processes implicated in each CMS.

DISCUSSION
This report is a unique example of a discovery effort performed by a 
community of experts to identify a consensus gene expression–based 
subtyping classification system for CRC. Thanks to the collaborative 
bioinformatics work on the largest collection of CRC cohorts with 
molecular annotation to date, and building upon previous efforts by 
the independent researchers, the analyses by members of the con-
sortium resulted in a consensus molecular classification system that 
allows the categorization of most tumors into one of four robust sub-
types. Marked differences in the intrinsic biological underpinnings 
of each subtype support the new taxonomy of this disease (Fig. 5). 
We believe that this new taxonomy (CMS1 (MSI immune), CMS2 
(canonical), CMS3 (metabolic) and CMS4 (mesenchymal)) will facili-
tate future research in the CRC field and should be adopted by the 
community for CRC stratification. From a biological perspective, we 
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Figure 4 Clinicopathological and prognostic associations of consensus molecular subtype groups. (a–d) Distribution of gender (n = 2,844) (a), 
tumor site location (n = 2,641) (b), stage at diagnosis (n = 2,952) (c) and histopathological grade (n = 747) (d) across consensus subtype samples, 
represented by the colored bars CMS1, yellow; CMS2, blue; CMS3, pink; CMS4, green. (e–g) Prognostic value of CMS1 (yellow), CMS2 (blue),  
CMS3 (pink) and CMS4 (green) with Kaplan-Meier survival analysis in the aggregated cohort for overall survival (n = 2,129) (e), relapse-free survival  
(n = 1,785) (f) and survival after relapse (n = 405) (g). The hazard ratios (HR) and 95% confidence intervals (CI) for significant pairwise comparisons  
in univariate analyses (log-rank test) are displayed in each Kaplan-Meier plot. Numbers below the x axes represent the number of patients at risk at  
the selected time points. Detailed statistics are in Supplementary Tables 5 and 13.
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were able to refine the number and interpretation of the ‘non-MSI’ 
subtypes, which represent nearly 85% of the primary CRC samples. 
We also describe strong molecular associations, particularly for sam-
ples lacking a mesenchymal phenotype. From a clinical perspective, in 
CRC, as for many other cancer types, it remains unclear what features 
will provide the most relevant subclassification tool. Gene expression 
subtypes have been extensively investigated in breast cancer, gene 
mutations and fusions in lung cancer, chromosomal alterations in 
hematological malignancies and histological features in sarcomas; 
however, it is still unknown whether combinations of these features 
are needed for accurate prediction of prognosis or drug responses.  
In CRC, few biomarkers (including RAS and BRAF mutations and  
MSI and CIMP status) have been translated to patient care. It is 
important to emphasize that although the CMS groups are enriched  
for some genomic and epigenomic markers, their associations 
described here do not allow categorization of gene expression  
subtypes, thus reinforcing the notion that transcriptional signatures 
allow refinement of disease subclassification beyond what can be 
achieved by currently validated biomarkers28. For example, although 
tumors with wild-type RAS are considered to be a homogeneous 
entity for the purpose of making therapeutic decisions in the set-
ting of advanced cancer, they were found across distinct CMS groups  
with profound biological differences that are expected to translate 
into heterogeneous drug responses.

Future steps and resources
Qualitative and clinically relevant disease subtyping takes time and 
multiple resources. Our CRC subclassification effort is a stepwise 
process that aims to involve a large number of relevant researchers 
from the CRC research community at first and subsequently involve 
cooperative groups, pharmaceutical companies and regulatory  
agencies. We postulate that the identification of molecularly  
homogeneous subsets of CRC tumors, and the characterization of 
potential driver events in these samples, will advance effective drug 
development strategies. Recently, MSI status was found to be predictive  
of the benefit of immune checkpoint blockade in advanced CRC, 
corroborating the value of integrating knowledge of the underlying 
biology with drug development strategies29. Although this is admit-
tedly speculative at this point, the oncogene amplifications that were 
found in CMS2 samples, the prominent metabolic activation of CMS3 
tumors and the TGF-β signaling dependence of CMS4 malignancies 
have strong potential for the development of novel targeted therapies 
in CRC, yielding well-defined and reasonably sized groups in which 
to test these hypotheses.

Subclassification per se, even when built on what are believed to be 
relevant features of cancer cells (such as expression of cancer pathway 
components or driver gene mutations), may still not be predictive of 
differential drug responses. This can be due to the drugs themselves, 
with promiscuous mechanisms of action that may not track well with 
single pathway descriptors, or to our inability to properly define path-
way engagement or cross-talk using static ‘omics’ data. Reanalysis of 
relevant clinical trials using semisupervised approaches that are based 
on predefined patient subgroups and allowing for further discovery 
on the basis of observed outcomes may be the best alternative for the 
research community. Our current work, which provides the consen-
sual best description of CRC heterogeneity available today, aims at 
delivering exactly that tool for systematic interrogation in different 
clinical settings. It will also accelerate the application of gene classifi-
cations to cell lines, organoids and patient-derived xenograft models 
with drug sensitivity data.

To enable retrospective and prospective stratified explorations, we 
are releasing a set of CMS classifiers that can be used by the com-
munity as research tools (R package available for download; see 
Online Methods), either in the context of population studies (random  
forest classifier, as described above, which requires data normalization)  
or for use in a single-sample setting (alternative Pearson-based predic-
tor, which has been optimized to be less dependent on preprocessing 
of gene expression data). Of note, samples that do not fall within the 
four CMS groups should be considered separately as indeterminate 
subtypes, of yet unknown biological and clinical behavior.

To conclude, we believe that the framework presented here pro-
vides a common foundation for CRC subtyping and is to be further 
refined in the future as other sources of ‘omics’ data are integrated and 
clinical outcomes under specific drug interventions become available.  
We hope that this model of expert collaboration and data sharing 
among independent groups with strong clinical and preclinical  
expertises will be emulated by other disease areas to accelerate our 
understanding of tumor biology.

METhODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Normalized gene expression data, CMS subtyping 
calls and sample annotation from public data sets used in the consor-
tium are available at Synapse (Synapse ID syn2623706).

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METhODS
Overall design. The design and workflow of this project are described in 
Figure 1. There were six participating groups, each of which had previously 
developed and published a methodology for classifying CRC samples using 
gene expression data (described below). An additional group was designated 
as an ‘evaluation group’ (Sage Bionetworks) to run an unbiased comparative 
analysis. All public and proprietary data sets (Supplementary Table 1) were 
uploaded into a common data repository (http://www.synapse.org)31. This 
project focused on the secondary analysis of existing de-identified genomic 
and clinical data. No readily identifiable information was included in these 
data sets and all patients had previously given informed consent for use of the 
data in future CRC research at the time of specimen collection. Gene expres-
sion data was accessible to all groups, and non-expression data (i.e., clinical  
and molecular annotations) were accessible only to the evaluation group. 
Each data set was processed and normalized once, using a single protocol per 
platform (see section on ‘Gene expression processing and normalization’). 
Although this decision precluded an analysis of the impact of gene expression 
normalization on subtyping, it significantly reduced the number of cross-group 
comparisons and allowed this study to focus on biological interpretations of 
the different subtypes rather than on bioinformatic procedures. Each group 
then applied their subtyping classifier to the data sets in the common reposi-
tory. Of note, the distribution of subtype labels from each group as reported in 
corresponding subtyping publications was maintained in the collection of data 
sets from the consortium (Supplementary Fig. 12). All results were deposited 
in Synapse, allowing for an automated evaluation of all results.

Colorectal cancer subtyping platforms. A summary of the six subtyping  
platforms is provided in Supplementary Tables 1 and 2. This includes enumera-
tion of the methodologies and data used to define CRC subtypes and molecular 
characterization of each of these subtypes.

Group A. Budinska et al.4: based on a discovery data set consisting of 1,113 
CRC samples and 3,025 genes with variance exceeding a given threshold, we 
applied hierarchical clustering to the genes, followed by dynamic tree cut to 
produce 54 gene modules containing in total 658 genes, as described in ref. 4. 
For each sample we then computed a vector of meta-gene scores by taking the 
median of the expression values for the genes in each module. On the resulting 
meta-gene expression matrix, we applied hierarchical clustering using a con-
sensus distance, followed by dendrogram pruning, which identified five distinct 
subtypes. A subset of the samples, which were reliably assigned to a subtype  
(so-called ‘core’ samples), was used to define a classifier. To build the classifier,  
we first converted the expression values for each gene to z-scores by subtracting 
the mean and dividing by the s.d. across the core samples. Then, we computed 
meta-gene scores by taking the median of the expression values for each sam-
ple across the genes in each of the previously defined modules. The resulting 
meta-gene expression matrix was used as the input to train a linear discriminant 
analysis (LDA) classifier for the five subtypes. To subtype the samples of an 
independent data set, we first computed z-scores for each gene across all sam-
ples, followed by meta-gene score computation as described above. After this 
preparation, the independent data set was submitted to the pre-trained LDA.  
For each sample, this returns the probability of belonging to each of the subtypes. 
In cases where a non-probabilistic partition of the samples into groups is sought, 
each sample is assigned to the subtype with the highest probability.

Group B. Marisa et al.8: a multicenter series of 556 fresh-frozen tumor samples 
of patients with stage I to IV colon cancer, mainly retrospectively collected, 
was used (GSE39582, Affymetrix U133plus2 platform). All of the expression 
profiles were normalized together using the robust multi-array average (RMA) 
method. The ComBat method32 was then used to correct technical batch effects. 
The resulting matrix was row-mean-centered. Our series was then split into a 
training set (n = 433) and a validation set (n = 123). CRC subtypes were derived 
from the training set by applying consensus hierarchical clustering (consensus 
cluster plus procedure) to the expression profiles reduced to the most variant 
probe sets (n = 1,459). The consensus was calculated across 1,000 resampling 
iterations of the hierarchical clustering (linkage: Ward; interindividual distance: 
1 − Pearson correlation coefficient), each iteration being based on a random 
selection of 90% of the samples and 90% of the probe sets. To predict subtypes 
in independent data sets, we developed a centroid-based predictor using the 
most discriminative genes (57 genes). A tumor was assigned to the subtype of 

the closest centroid using diagonal LDA distance for Affymetrix data set and  
‘1 − Pearson correlation’ for non-Affymetrix data sets. The confidence call of the 
prediction (posterior probability approach) was determined using the distribu-
tion of the difference between the two nearest centroids on the training set.

Group C. Roepman et al.3: Using Agilent microarray based full genome 
expression data of 188 stage I–IV CRC patients, an unsupervised cluster-
ing revealed three major subtypes (A-, B- and C-type). A single sample  
molecular subtype classifier (Pearson correlation–based nearest centroid model) 
was developed and validated in 543 stage II and III patients. In this consen-
sus effort, additional CRC sample that were hybridized onto the same Agilent  
platform were analyzed using the exact same method as described in detail  
in ref. 3. CRC samples analyzed on the Agilent platform were preprocessed by 
median centering within each of the Agilent data sets. Following median center-
ing, subtype similarity scores for A-type, B-type and C-type were processed 
similarly as in the Agilent-derived data.

Group D. De Sousa E Melo et al.7: A colon cancer subtype (CCS) classifier was 
derived from unsupervised classification of the core data set AMC-AJCCII-90, 
consisting of 90 stage II colon cancer patients (GSE33113). The microarray data 
were first normalized using the frozen robust multiarray analysis (fRMA)33, with 
gene expression presence and absence called using the barcode algorithm34. 
After filtering out genes not present in at least one sample, 7,846 probe sets of 
top variability (median absolute deviation > 0.5) were kept and median centered. 
On the basis of consensus clustering (1,000 iterations, 0.98 subsampling ratio) 
and GAP statistics, we identified three robust clusters. Eighty-five samples with 
positive silhouette width were considered as the most representative samples 
and retained for analysis. To allow cross-platform classification, we mapped 
probe sets to unique genes: for each gene we kept its corresponding probe set 
with highest overall expression. Significance analysis of microarrays (SAM)35 
and AUC (area under receiver operating characteristic (ROC) curve) scores 
were employed to identify the most discriminative genes. Prediction analysis for 
microarrays (PAM)36 was subsequently performed with tenfold cross-validation  
over a range of centroid shrinkage thresholds for 1,000 iterations. Finally, a 
PAM classifier of 146 unique genes was built with the optimal threshold for 
centroid shrinkage selected on the basis of a trade-off between classification 
performance (error rate < 2%) and the size of the gene signature. To use the 
CCS classifier, expression profiles obtained after normalization were median-
centered across cancer samples. For microarray data generated from platforms 
other than Affymetrix Human Genome U133 Plus 2.0, probe sets were mapped 
to gene symbols. Signature genes without annotation were substituted by genes 
with highest correlation, as calculated from our core data set. Median-centered 
expression profiles of signature genes were subjected to CCS classifier for subtype  
prediction, which returns the posterior probability that a cancer sample belongs 
to each subtype. Each cancer sample is subsequently classified to the subtype 
with the highest probability.

Group E. Sadanandam et al.6: The five CRCassigner subtypes were defined 
using non-negative matrix factorization (NMF)-based consensus37 cluster-
ing of two publicly available gene expression profile data sets (GSE13294 and 
GSE14333) merged using the distance-weighted discrimination method38. 
Statistical analysis of microarrays (SAM)35 was then used to identify the most 
significant differentially expressed genes between subtypes. The prediction anal-
ysis for microarrays (PAM)-based shrunken centroid method36 (with tenfold 
cross-validation) was used to define a 786-gene classifier (CRCassigner-786; 
PAM centroids) to assign individual CRC samples to one of five CRCassigner 
subtypes6. Here we classified the samples into five subtypes using the PAM 
centroids for CRCassigner-786 genes and Pearson correlations, which is dif-
ferent from our original publication. This method was chosen to unam-
biguously assign each sample to one of the five subtype labels on the basis of  
correlations and to ensure consistency between the methodologies used by the 
groups in this consortium. Before subtyping, probe sets were mapped to their 
corresponding HUGO gene nomenclature committee (HGNC)-based official 
gene symbols. We also: (i) removed probes that did not map to any known 
gene symbol; (ii) removed duplicate genes by selecting probes with highest 
variability; and (iii) performed row (across samples) median-centering for  
each data set. Finally, the CRCassigner-786 genes were selected from the 
data sets. Pearson correlations between median-centered CRCassigner-786  
gene expression data for each sample and the PAM centroids were estimated 
for a given data set.

http://www.synapse.org
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39582
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33113
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13294
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14333
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Group F. Schlicker et al.5: We derived CRC subtypes by applying iterative  
non-negative matrix factorization (iNMF) to data set GSE35896. Raw gene 
expression data were first normalized using the RMA procedure and subse-
quently mean-centered. Probes that were not expressed in any tumor sample 
were removed from the data set. Briefly, iNMF proceeds in the following steps. 
First, we applied non-negative matrix factorization (NMF) to 100 randomly 
selected groups of probe sets. Second, we hierarchically clustered samples on 
the basis of how often they co-clustered in the 100 NMF runs and selected 
core clusters consisting of frequently co-clustering samples. Third, probe sets 
that were differentially expressed between the core clusters were selected as 
subtype signatures, and all samples were assigned to subtypes by hierarchical 
clustering. Iteratively applying this procedure resulted in identification of five 
CRC subtypes. Independent data sets are subtyped by hierarchically clustering 
the samples using the expression signatures. To derive a probability value for a  
subtype assignment, we performed the hierarchical clustering on 10,000  
randomly selected bootstraps. The subtype probability is then defined as relative 
frequency with which a sample has been assigned to each subtype.

Gene expression data processing and normalization. The publicly avail-
able data sets with CRC tumor samples from the Gene Expression Omnibus 
(Supplementary Table 3) were normalized using the robust multi-array average 
(RMA) method as implemented in the ‘affy’ package39. Overlapping samples 
in GSE14333 and GSE17536 were excluded from GSE14333. For consensus  
network analysis and training a consensus subtype classifier, all private and 
public Affymetrix data sets were renormalized using the single-sample frozen 
RMA method33 as implemented in the ‘frma’ package for R/Bioconductor.

Several of the CRC tumor sets were analyzed on full genome Agilent microar-
rays (Agilent, Santa Clara). Samples were hybridized against a common CRC 
reference pool, and full genome data was normalized using loess and local 
background subtraction (‘limma’ package). Details about sample processing 
and microarray analysis can be found in ref. 3.

Level 3 TCGA RNA-seq data for colon and rectal was downloaded from 
the TCGA data portal (January 2014). RSEM-normalized data40 was further 
log-transformed, and non-tumor samples were removed. Principal component 
analysis (PCA) revealed no clear differences between rectal and colon samples 
(data not shown), and samples were combined without adjustment. PCA showed 
a strong separation between genome analyzer (GA) and HiSeq samples and was 
batch-corrected using the ComBat method32.

We additionally performed outlier sample detection within each data set using 
two methods: a method based on PCA and one using the ‘arrayQualityMetrics’ 
R package41. For the PCA approach, we took into account the first two principal 
components and marked all samples with a distance greater than 2.5 as potential 
outliers. We next employed arrayQualityMetrics to flag outliers on the basis of 
pairwise sample distances, gene expression value distributions and MA plots 
(MA plots were not investigated for Agilent-based expression data sets). Overall, 
a sample was classified as outlier if it was flagged on the basis of the distribution 
of gene expression values and either pairwise distances to other samples or to 
the PCA criterion. Outliers were removed from further analysis.

Network analysis of subtype association. To study the association between the 
six CRC classification systems (A to F, each consisting of three, five or six subtypes 
and totaling 27) we employed a network-based approach. The network encodes 
on nodes the information of subtype prevalence and on edges their association 
calculated on the basis of Jaccard similarity coefficient, which is defined by the 
size of the intersection between two sample sets over the size of their union. To 
quantify the statistical significance of subtype associations, we performed hyper-
geometric tests for overrepresentation of samples classified to one subtype in 
another. The resulting P values were adjusted for multiple hypotheses testing using 
the Benjamini-Hochberg (BH) method. Using this approach, we built a network 
consisting of the total 27 subtypes defined in the six different subtyping systems, 
interconnected by 96 significant (BH-corrected, P value < 0.001) edges.

Identification of consensus subtypes. To identify consensus groups from the 
network of subtype association, we used a consensus clustering approach involv-
ing the following steps. (a) Network construction: using the approach described 
above, 80% of patient samples are randomly selected to generate a network of 
subtype association. (b) Network clustering: the network generated is partitioned 
into clusters using MCL (Markov cluster algorithm)11,12, which is a scalable and 

efficient unsupervised cluster algorithm for networks. (c) Cluster evaluation: 
steps (a) and (b) are repeated for n = 1,000 times. From all clustering results, we 
calculated a 27 × 27 consensus matrix, defined by the frequency that each pair 
of subtypes is partitioned into the same cluster. On the basis of the consensus 
matrix, we assessed the robustness of each subtype with a stability score, which 
is the average frequency that its within-cluster association with other subtypes 
is the same as predicted by MCL on the network generated with all samples.  
For evaluation of clustering performance, we employed weighted Silhouette 
width (R package ‘WeightedCluster’), which extends Silhouette width by giving 
more weights to subtypes that are more representative of their assigned clusters. 
Here, we used stability scores as weights to calculate weighted Silhouette width 
and took the median over all subtypes as a measure of clustering performance, 
which was used to evaluate the optimal number of clusters.

It should be noted that during network clustering, network granularity is 
controlled by inflation factor f in MCL, which is associated with the number of 
clusters k. No network substructure is recognized by MCL with f < 1.6, whereas 
f > 10 MCL does not provide any conceivable clustering. Therefore, we enumer-
ated f from 1.6 to 10 and performed the three steps described above to compare 
their clustering performances. We selected, as the optimal, f = 3.8, which gives 
the highest median weighted Silhouette width (Supplementary Fig. 1), and 
generated four consensus molecular subtypes (CMS) using MCL. Representative 
consensus matrices illustrating robustness of clustering based on f = 1.6, 3.8 and 
10 resulted in three, four and five clusters, respectively, are shown in heat maps 
ordered by identified CMS groups (Supplementary Fig. 1).

Identification of core consensus samples. For each CRC sample (n = 3,962), we 
performed a hypergeometric test for overrepresentation of assigned subtypes in 
the set of subtypes associated with each CMS. The CRC sample is assigned to a 
CMS if the corresponding overrepresentation test is significant (P value < 0.05). 
Using this strategy, 78% of the samples are identified to be highly representative 
of that particular consensus subtype and are considered core ‘consensus’ sam-
ples. These samples have been taken to train a classifier using a random forest 
algorithm to apply the consensus classification to the non-consensus samples 
(details in the ‘Classification’ section). The distribution of unlabeled samples 
per data set is shown in Supplementary Figure 2.

Data aggregation. To construct the classifier described in the main article, the 
private (shared amongst the consortium members) and public gene expression 
data sets had to be aggregated into a single matrix. These data sets were generated 
on different platforms, in different labs and at different time points, and thus 
we expect strong batch effects that, if not addressed, prevent efficient merging. 
Moreover, not all of the genes are measured on all platforms, and those that 
are may be represented by different probes, which can give rise to inconsistent 
or even contradictory measurements, and thus further highlights the need for 
careful data preprocessing before the merge. We devised an algorithm suited for 
this aggregation, which is explained step by step below. The complete workflow 
is illustrated in Supplementary Figure 13. Detailed strategy was as follows.  
(i) Remove outlier samples from each data set separately (see section ‘Gene 
expression data processing and normalization’ for details). (ii) Create a collection 
of reference genes (GREF)—5,000 genes with largest median absolute deviation 
(MAD) were selected among those that were measured by at least one probeset in 
all data sets. Each of these genes was represented by the corresponding probeset 
with the largest MAD. (iii) Select a reference data set (referred onwards as DREF). 
In our case we chose the largest Affymetrix data set8, and in this data set, each 
gene in GREF was represented by the probeset with the largest MAD. (iv) For 
each of the other data sets, we used a consistency criterion to select the probe 
set to represent each gene. First, for each probe set, we calculated the correla-
tion between the expression of the probeset and the reference genes in the same 
data set. This gives, for each probe set, a correlation vector C of length |GREF|. 
(v) To select the probe set that was used to represent a gene g in data set D, we 
computed the correlation (c) between the correlation vector C for each of the 
corresponding probe sets and the correlation vector for gene g in DREF. (vi) To 
select the probe set that represented gene g in the reference data set DREF, we 
chose the probe set with the highest correlation with most of the other data sets. 
Therefore, for each data set D, we selected the probe set in DREF, which has the 
largest ‘correlation of correlations value from ‘V’ with the probe sets in D. The 
probe set selected is the one chosen to represent g in DREF. (vii) For each other 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35896
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14333
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17536
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14333
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data set D, the probe set with the highest value of the ‘correlation of correlations’ 
with the chosen probe set in DREF was selected to represent g. (viii) At this stage 
we had, for each data set, an expression matrix with a number of rows equal to 
the number of genes that are measured in all data sets. We then merged all these 
matrices to form a new expression matrix containing all the samples. (ix) We 
used ComBat32 to remove the per data set ‘(batch) effect’, adding MSI status as a 
covariate. For data that did not have MSI status, we imputed MSI status using the 
MSI signature score42. (x) We filtered the aggregated data set further on the basis 
of the quantile range and the correlations calculated in step (v). We kept genes 
for which the difference between the 0.95 and 0.05 expression quantiles exceeded 
0.75 in all data sets and when the correlation c exceeded 0.5 in all data sets.

Consensus molecular subtype classifier (random forest). Using the aggregated 
gene expression data set, we developed a multi-class classifier to predict CMS 
subtypes in new samples. To train and validate our classifier, we used the core 
consensus samples (n = 3,104), i.e., those samples that are strongly representative 
of each of the CMS subtypes. We trained and validated our models using the 
aggregated data set (see ‘data aggregation’ section), which includes 5,972 genes 
that were observed to have gene level consistency as measured by correlation 
and variance across the multiple data sets in this study.

To train the classifier(s), we used the random forest (RF) algorithm43, a 
widely used machine-learning method that operates by generating multiple 
bootstrapped versions of the training data, and fitting a decision tree to each of 
these bootstraps (scripts and code for the fandom forest CMS classifier are avail-
able at Github, https://github.com/Sage-Bionetworks/crcsc). The final classifier 
is then an ensemble of each of these decision trees. The RF algorithm has been 
well studied in the context of gene expression classifiers as it performs well with 
highly correlated, high-dimensional data and is less prone to overfitting due to 
the averaging effect across many models44. Although the CMS subtypes do not 
occur with equal proportions, we trained our classifier using a ‘balanced’ model 
approach, i.e., our model does not make a priori–based assumptions about the 
frequency of each subtype. Therefore, for each iteration of the RF bootstrap, we 
randomly sample from each subtype in equal proportions. We parameterized 
the ‘forest’ to have 500 trees with an average of 70 nodes per tree.

Global classifier. To assess feasibility of developing a CMS classifier, we ran-
domly split our aggregated gene expression data matrix into two-thirds training 
and one-third validation using the core consensus samples from all data sets. 
After model training, we applied the classifier to the validation samples and 
computed performance metrics (sensitivity, specificity and balanced accuracy) 
for each CMS (Supplementary Table 4) and per data set. Although overall per-
formance was robust (Supplementary Fig. 3a), we observed that the four data 
sets generated using the Agilent platform had significantly lower performance 
metrics (Supplementary Fig. 3b).

Affymetrix (and RNAseq) classifier. We repeated the above procedure using 
only the core consensus samples profiled on the Affymetrix and RNAseq plat-
forms (n = 2,688). Overall performance metrics improved compared to the 
global classifier (Supplementary Fig. 3c,d).

Agilent classifier. We repeated the above procedure using core consensus 
samples profiled on the Agilent platform (n = 416). Performance metrics were 
improved relative to the Agilent metrics from the global classifier. However, over-
all performance was below the Affymetrix/RNAseq classifier (Supplementary 
Fig. 3e,f). Given the smaller number of samples available to train this model, 
the lower performance is not unexpected.

Data set splits. The previous classifiers were developed by randomly sampling 
from all data sets and partitioning them into training and validation sets. To eval-
uate classifier performance across data sets (i.e., training in one set of data sets 
and validating in an independent set of data sets), we performed two independ-
ent experiments. The first experiment used the GSE39582 (Affymetrix, fresh-
frozen, n = 466), the TCGA (RNAseq, n = 459) and the GSE17536 (Affymetrix, 
n = 147) data sets for model validation. Results are shown in Supplementary 
Figure 3g. In this experiment, no RNAseq data was used in training of the clas-
sifier and yet we observed that balanced accuracy in all CMS groups was >0.9 
and comparable to that in the Affymetrix data sets. Overall, we observed robust 
performance metrics in these validation data sets.

Our second data split experiment was to separate the PETACC-3 (n = 526) 
data set for validation, composed of formalin-fixed paraffin-embedded (FFPE) 

samples. This experiment allowed performance assessment of a fresh-frozen 
model applied to FFPE samples. Results are shown in Supplementary Figure 3h.  
In general, performance metrics were robust with the exception of CMS3. 
Notably, sensitivity/specificity for CMS3 was 0.70/0.98. The high type II error 
rate in CMS3 suggests some biological differences between FFPE and fresh- 
frozen samples and underscores the importance of using FFPE samples for  
training a classifier in this context.

Classification of non-consensus samples. We developed final classifiers sepa-
rately for the Agilent and the Affymetrix/RNAseq data sets using all core consen-
sus samples for model training. We then applied the classifiers on the unlabeled 
(non-consensus) samples. Recognizing that the samples may not be robustly 
classifiable, we set a minimum threshold of a 0.5 posterior probability (output 
from the random forest model) to assign a sample to a CMS group (specificity 
analysis revealed this threshold choice to be conservative with few false positives, 
as seen in Supplementary Fig. 4). Using this criterion, we were able to assign 
279 samples (39% of the unlabeled Affymetrix/RNAseq samples) and 60 samples 
(40% of the unlabeled Agilent samples) to a single subtype.

A comparison of the major clinicopathological and molecular traits  
between the classified samples (combination of core consensus samples plus  
non-consensus samples with CMS label after random forest classifier)  
versus unclassified samples revealed no significant differences between these 
two groups (Supplementary Table 14). In addition, an intrasubtype com-
parison confirmed that the clinicopathological and molecular associations  
of the core consensus samples are recapitulated in the newly classified  
samples (Supplementary Table 15).

For the remaining unclassified samples (n = 519), we examined the presence 
of any pattern in the subtype probability scoring that would indicate which sub-
type pairs present a challenge for disambiguating. We observed a strong negative 
correlation between CMS1 and CMS2 (R = −0.60, P < 1 × 10−16) and CMS3 and 
CMS4 (R = −0.76, P < 1 × 10−16) indicating that these pairs are more easily separa-
ble. Conversely, the near-zero correlation between CMS2 and CMS3 (R = −0.06)  
suggests that this pair may be the most challenging to disambiguate.

Using the aggregated gene expression data, we further examined the unclas-
sified samples with PCA and sparse Bayesian factor analysis (sBFA). A plot 
of the first four PCs confirms that unclassified samples are not outliers but 
are instead heavily concentrated in the regions between the CMS-distributed 
samples (Supplementary Fig. 5a), corroborating the distribution of the non-
consensus samples in Figure 2c. Next, we selected the most variable genes across 
samples using an s.d. cut-off of 1 and fitted the factor analysis model to this 
data set using Bayesian framework. By introducing sparsity in the feature space 
through priors, the sBFA improves clustering of samples and allows identification  
of a latent or ‘hidden’ variable that may discriminate unclassified samples from 
the CMS samples45,46. The projected data in the three-dimensional latent space 
shows that the unclassified samples are not separate from the CMS-classified 
samples (Supplementary Fig. 5b). These analyses suggest that many of these 
unclassified or mixed samples are not necessarily technical outliers or new  
(and yet undetected) subtypes but instead are potential mixtures or indeter-
minate CMS subtypes.

We next clustered the posterior probabilities of these unclassified samples 
to examine any potential pattern of subtype mixtures. We observed distinc-
tive patterns including two or more subtypes (Supplementary Fig. 5c), with 
CMS2-CMS4 comprising over 23% of the unclassified samples, followed by 
CMS2-CMS3 mixed with 17% (Supplementary Fig. 5d).

Clinical and molecular correlative analyses. Samples and data sets with clinical 
and molecular annotation are described in Supplementary Table 3. The distri-
bution of clinical and molecular data by the four consensus subtypes is shown 
in Supplementary Table 5. Data was generated by each independent group or 
TCGA and aggregated with standardization as described below. We performed 
nonparametric tests for comparisons of continuous values (Kruskal-Wallis) and 
discrete counts (Fisher’s exact test). Samples from each CMS were compared with 
the remaining samples, after confirming similar variance of the groups being com-
pared. P values were adjusted for multiple comparisons as detailed in each section. 
All correlative analyses were carried out using R statistical software version 3.1.1.

Mutation profile. KRAS, BRAF, PIK3CA, PTEN, APC and TP53 muta-
tion detection: for sequencing platform details refer to publications from the  

https://github.com/Sage-Bionetworks/crcsc
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39582
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17536
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individual groups. In summary, in data sets other than TCGA, targeted sequenc-
ing was performed (codons or specific variants in oncogenes—KRAS, BRAF and 
PIK3CA—and most frequently mutated exons in tumor suppressors—PTEN, 
APC and TP53). For TCGA samples, somatic mutations and indels (insertions 
and deletions) called from exome sequencing of matched tumor and normal 
genome pairs were aggregated using mutation annotation format (MAF) files 
from Synapse TCGA Live data portal (https://www.synapse.org/#!Synapse:
syn300013/files/; September 2014). Silent mutations were excluded.

Other genes (exome level): available in TCGA data set, as described above.
Hypermutation class: available in TCGA data set, defined on the basis of 

whole-exome mutation count distribution using the same threshold as in the 
original publication (>180 events per exome as hypermutated sample)2.

Mutation in cancer driver genes analysis: in TCGA samples, we identified 
nonsilent somatic mutations and indels in a selected list of significantly mutated 
cancer drivers47. We performed a supervised analysis of mutations in these genes 
and consensus subtypes. A Fisher’s exact test comparing prevalence of mutation  
events in all samples from each CMS and the remaining samples was con-
ducted and the resulting P values were adjusted for multiple comparisons using 
Benjamini-Hochberg method. Results can be found in Supplementary Table 8.  
A clear pattern of over-enrichment of mutations in cancer drivers is seen in 
CMS1, with the exception of APC and TP53. APC mutations are significantly 
enriched in CMS2, as are KRAS mutations in CMS3.

Copy number events profile. Arm level copy number changes were visualized 
by using the GISTIC scores and CMS labels with the University of California 
Santa Cruz cancer genome browser. Focal (gene-level) copy differences were 
compared between subtypes by first mapping the genomic coordinates of the 
segmented means to single genes using the ‘GenomicRanges’ Bioconductor 
package. For a selected list of significantly altered oncogenes or tumor suppres-
sors according to TCGA, we performed a supervised analysis of copy number 
counts and consensus subtypes (n = 485). A Student’s t-test between the copy 
mean of all samples within a CMS and the copy mean of the remaining samples 
was conducted and the resulting P values were adjusted for multiple comparisons 
using Benjamini-Hochberg method. Results can be found in Supplementary 
Table 6. In CMS2 samples, copy number counts were consistently higher in 
oncogenes and lower in tumor suppressors. The opposite trend is seen in CMS1 
samples, whereas CMS4 tumors displayed no significant enrichments for copy 
number events in candidate driver genes.

Somatic copy number alterations (SCNA) count and class: available in TCGA 
data set. Whole genome copy number GISTIC scores were downloaded from the 
Firehose Broad website (http://gdac.broadinstitute.org/; Sept 2014). We counted 
GISTIC scores −2/−1/+1/+2 as events for SCNA estimation (<Q1 was considered 
low and ≥Q1 was considered high).

High-level amplifications and homozygous deletions: for a targeted list 
of significantly altered oncogenes or tumor suppressors according to TCGA 
(ref. 2) (MYC, HNF4A, CDK8, FGFR1, ERBB2, IGF2, PTEN, SMAD4, APC 
and TCF7L2), high level amplification was defined as GISTIC scores +2 and 
homozygous deletion as GISTIC scores −2.

Microsatellite status. Microsatellite status was determined using either using 
a panel of five microsatellite loci from the Bethesda reference panel48 or immu-
nohistochemistry markers49. For consistency, only samples with high-level  
microsatellite instability were considered instable (MSI).

Methylation data analysis. For characterization of the four CMS groups 
with DNA methylation data, we used TCGA-defined four DNA-methylation 
subgroups (CIMP-H, CIMP-L, cluster3 and cluster4) in their 27K subseries by 
unsupervised analysis (see Supplementary Table 1 in TCGA CRC (ref. 2)) and 
extended this analysis with an additional 450K data set as detailed below.

We downloaded Level3 β-values from the Illumina Infinium 
HumanMethylation450 Array platform. The data set consists of in total 301 
tumors and 38 normal samples. We employed hierarchical clustering and PCA 
to assess if there is any potential nonbiological batch effect with respect to tissue 
source site (TSS) and batch variables. The hierarchical clustering was performed 
on the basis of the Ward’s linkage algorithm, with dissimilarity scores calculated 
from 1 – Pearson correlation coefficients. As shown in Supplementary Figure 6a,  
samples are well mixed among various tissue source sites and batches.

To determine CpG Island Methylator Phenotype (CIMP) status, we first 
reduced data to the probes present in the 27K version beadchip (n = 25,978 
probes). We then applied the same filters (removing probes with any NA values 

and probes designed on X and Y chromosomes) and performed recursively par-
titioned mixture model (RPMM) clustering approach on the 10% most variant 
probes across tumors on the basis of s.d. (n = 1,486; s.d. > 0.18) using ‘RPMM’ 
R/Bioconductor package (http://CRAN.R-project.org/package=RPMM) with 
default parameters. RPMM returned, as for the 27K subseries, four clusters. We 
then drew the heat map of β-values as in the original article (using R packages 
‘heatmap.plus’ and ‘seriation’; Supplementary Fig. 6b). Considering the methy-
lome patterns of the four subgroups from the 27K subseries, we could assign 
the cluster 1 to CIMP-H, the cluster 2 to CIMP-L and the other two clusters to 
cluster3-cluster4.

For differential methylation analysis, we used 187 tumor samples that have 
classification labels on the basis of TCGA gene expression CMS data. We first  
calculated the methylation level for each gene by taking the median β-value over 
all corresponding annotated probes. Next, we performed differential methyla-
tion analyses on the basis of two sample t-tests, comparing each CMS with the 
other CMS groups. Out of the total 21,231 genes, we identified 1,664 genes that 
were differentially methylated (Benjamini–Hochberg-corrected P value < 0.05 
and |log2 fold change| > 0.5) between at least one CMS and the others (heat map 
shown in Supplementary Fig. 6c). As expected, most of the differentially meth-
ylated genes (n = 1,262) have significantly higher methylation in CMS1 tumors, 
which is consistent with their CIMP-H status. Nonetheless, we also observed 
genes that were specifically hyper- or hypomethylated in the other three CMS 
groups, suggesting subtype-specific epigenetic regulation of the identified four 
CMS groups (data not shown).

We also performed a combined CIMP status analysis with TCGA results 
added to the panel of five markers as previously described50, available in 
other data sets (Supplementary Table 3). For consistency, in the combined 
analysis only samples with high level methylation were considered CIMP-high 
and the remaining were classified as CIMP negative. Results are described in 
Supplementary Table 5, with enrichment for CIMP-high in CMS1.

Integrative analysis. We performed integrative analysis in the TCGA data set 
only, using the same strategy as described in the original TCGA publication2 
with regards to mutation, copy number and gene expression changes in targeted 
genes and pathways (Supplementary Fig. 7c). To summarize, for mutations, only 
nonsilent events were considered activating or inactivating alterations. For copy 
number events, only high-level amplifications or homozygous deletions were 
defined as alterations. In some cases, up- or downregulation of gene expression 
was also considered a pathway alteration (IGF2, FZD10 and SMAD4 genes).

Pathway analysis. Genesets of interest were identified by the consortium 
and separated in five main groups, as detailed in Supplementary Table 9 and 
below:

(i)  ESTIMATE algorithm: method that uses gene expression signatures to 
infer the fraction of stromal and immune cells in tumor samples30.

(ii)  Curated signatures: upper and lower normal colon crypt compart-
ments51, epithelial and mesenchymal markers7, WNT52 and MYC 
downstream target53, epithelial-mesenchymal transition core genes 
and TGF-β pathway54, intestinal stem cells55, matrix remodeling (RE-
ACTOME) and wound-response (GO BP).

(iii)  Canonical genesets: MAPK and PI3K (GO BP), SRC, JAK-STAT, cas-
pases (BIOCARTA), proteosome (KEGG), Notch, cell cycle, transla-
tion and ribosome, integrin-β3 and vascular endothelial growth factor 
(VEGF) and VEGF receptor (VEGFR) interactions (REACTOME).

(iv)  Immune activation: immune response (GO BP), PD1 activation (RE-
ACTOME), infiltration with T cytotoxic cells (CD8)56 and T helper cells 
(TH1) in cancer samples57,58, infiltration with natural killer (NK) cells59 
and follicular helper T (TFH) cells60 in cancer samples, activation of  
T helper 17 (TH17) cells61, regulatory T cells (Treg)62 or myeloid-derived  
suppressor cells (MDSC)63.

(v)  Metabolic activation: sugar, amino acid, nucleotide, glucose, pentose, 
fructose, mannose, starch, sucrose, galactose, glutathione, nitrogen, 
tyrosine, glycerophospholipid, fatty acid, arachnoid acid, linoleic acid 
(KEGG), glutamine (GO BP) and lysophospholipid (PID).

Gene symbols were mapped to Entrez IDs to determine overlap in each  
individual data set that was evaluated for geneset enrichment. Geneset  
enrichment was tested for each subtype as compared to all other subtypes  
using the GSA64 method and was performed for each geneset by data set  

https://www.synapse.org/#!Synapse:syn300013/files/
https://www.synapse.org/#!Synapse:syn300013/files/
http://gdac.broadinstitute.org/
http://CRAN.R-project.org/package=RPMM
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combination using two-class unpaired tests with 10,000 permutations. A single 
P value per geneset was computed (consolidated across data sets) using Fisher’s 
combined probability test.

Proteomic analysis. For reverse-phase protein array (RPPA), normalized meas-
urements of 187 proteins were downloaded from the TCPA website (http://app1.
bioinformatics.mdanderson.org/tcpa/, Sept 2014). We performed a supervised 
analysis of RPPA levels and consensus subtypes (n = 382). A Kruskal-Wallis test 
comparing median protein expression values in all samples from each CMS and 
the remaining samples was conducted and the resulting P values were adjusted 
for multiple comparisons using Benjamini-Hochberg method. Results can be 
found in Supplementary Table 7. We identified 145 protein features that were 
significantly associated (P value < 0.05) with consensus subtypes. Of note, CMS1 
samples had elevated expression of proteins involved in apoptosis (caspase  
7 and Rad51), cell cycle (cyclins D1, E1 and E2) and DNA damage repair (Chk1), 
whereas CMS4 samples were mainly enriched for microenvironment proteins 
(collagen and fibronectin).

We also obtained liquid chromatography coupled to tandem mass spectrom-
etry (LC-MS/MS)-based shotgun proteomic quantile-normalized and log-
transformed data for 95 TCGA tumor samples21. Heat map of top differentially 
expressed proteins in TCGA, colored with a gradient from blue (low expression) 
to yellow (high expression), is shown in Figure 3g. Overall, 81 samples were 
assigned to one of the four CMSs identified here. Geneset enrichment was tested 
for each subtype as compared to all other subtypes using the GSA64 method, as 
described above. Results are summarized in Supplementary Table 10.

MicroRNA data analysis. For miRNA characterization of the four CMS groups, 
we used two independent data sets obtained from TCGA. Data set 1 includes 
Illumina GA sequencing data for 255 primary colorectal tumors, whereas data 
set 2 consists of Illumina HiSeq sequencing data for 241 primary colorectal 
tumors. For both data sets, we obtained Level 3 RPM (reads per million miRNA 
mapped) data from the TCGA data portal. The RPM data were log2-transformed 
after adding one pseudocount for the following analyses.

It has been confirmed previously that data set 1 has no serious batch effect2. 
For data set 2, we examined potential nonbiological batch effects with respect 
to tissue source site (TSS) and batch variables. For hierarchical clustering, the 
Ward’s linkage algorithm was performed with dissimilarity scores calculated 
from 1 − Pearson correlation coefficients. Overall, the hierarchical clustering 
results show that samples are well mixed among various tissue source sites and 
batches (Supplementary Fig. 8a).

For differential expression analysis, we first filtered out samples that do not 
have a CMS assigned due to lack of mRNA expression data availability. The filter-
ing step resulted in 197 samples for data set 1 and 200 samples for data set 2. For 
each data set, we performed differential expression analyses on the basis of two 
sample t-tests, comparing each CMS with the other CMS groups. A high Pearson 
correlation coefficient was observed in the log2 fold change between data sets 1  
and 2 for each CMS (Supplementary Fig. 8b), suggesting a high concord-
ance between the two independent data sets. In both data sets 110 miRNAs  
are differentially expressed (Benjamini-Hochberg–corrected P value < 0.05  
and |log2 fold change| > 0.5) between at least one CMS and the others.

Differentially expressed miRNAs between CMSs were illustrated in a heat 
map (Supplementary Fig. 8c). CMS2 can be characterized by the upregu-
lated mir-17–92 cluster, which is known to be bound and regulated by MYC22.  
The upregulation of the mir-17–92 cluster is consistent with the fact that MYC 
signaling is promoted in CMS2. Of the total of six miRNAs downregulated in 
CMS3, hsa-mir-143 and four miRNAs belonging to the let-7 family are known 
to bind and regulate the expression of RAS65,66. The five miRNAs can be used 
for characterizing CMS3, which is featured with more activated RAS and MAPK 
signaling. CMS4 is enriched for downregulated miRNAs (for example, hsa-mir-
148a and the miR-192 and miR-200 families) that are known for tumor suppres-
sion. The miR-200 and miR-192 families regulate epithelial-to-mesenchymal  
transition (EMT) pathway by targeting ZEB1 and/or ZEB2 (refs. 23,67),  
whereas hsa-mir-148a is predicted by TargetScan68 to regulate MMP13 and 
TGFB2, which are important for the matrix remodeling (MR) and TGF-β  
pathways. Taken together, the downregulation of miRNAs associated with  
suppression of the EMT-, MR- and TGF-β–associated signatures could explain 
why CMS4 is more aggressive and metastatic than the other CMSs.

Clinical and pathological variables. Data from different data sets were stand-
ardized as described as: (i) site: right colon (cecum, ascending, hepatic flexure 

and transverse colon), left (splenic flexure, descending and sigmoid colon) and 
rectum (Supplementary Fig. 10). (ii) Stage: assignments were defined using 
the latest edition of the American Joint Committee on Cancer’s Cancer Staging 
Manual available at the time of diagnosis (third to sixth). For consistency, we 
only investigated the major stage (I, II, III or IV), whose definition does not 
change in these different staging systems. (iii) Grade: 1 (well-differentiated),  
2 (moderately differentiated) and 3 (poorly differentiated) carcinomas, accord-
ing to pathology review performed by each independent institution.

Tumor purity analysis. We obtained the tumor purity estimation of CRC sam-
ples in the TCGA data set as defined by the ABSOLUTE algorithm20 (https://
www.synapse.org/#!Synapse:syn1710466). As seen in Supplementary Figure 7d  
and Supplementary Table 14, classified and unclassified samples did not 
have significant differences in tumor purity. We did observe a reduced pro-
portion of cancer cells (i.e., less tumor purity) in CMS4 samples, as shown in 
Supplementary Figure 7e and Supplementary Table 5. This finding is in line 
with the higher stromal and immune infiltration scores in CMS4 samples as per 
the ESTIMATE algorithm27 (Fig. 3i).

Analysis of tumor versus normal non-cancer tissue. We assessed the distri-
bution of normal samples obtained from the GSE39582 (n = 19 normal) and 
PETACC-3 (n = 64 normal) data sets. The gene expression data from each cohort 
was renormalized (see previous description of data normalization) including 
those from normal samples. PCA was then applied to each data set and, expect-
edly, tumor samples were clearly differentiable from normal samples using the 
top two PCs (Supplementary Fig. 9a,c). We next interrogated which of the CMS 
groups were more ‘normal’-like. We trained a Support Vector Machine to find 
the optimal hyperplane separating tumor versus normal samples, and then com-
puted the distance from all tumor samples to the hyperplane. Overall distance 
distributions by CMS groups are depicted in Supplementary Figure 9b,c.

Survival analyses. Overall survival (OS) and relapse-free survival (RFS) times 
were calculated on the basis of dates of cancer diagnosis or time of surgery, 
death due to any cause and disease relapse. For RFS analysis, patients that died 
without a relapse event were censored at the time of death. Relapse event was 
defined as clinical or radiological evidence of disease recurrence. Survival after 
relapse (SAR) was defined as time from relapse until death due to any cause.  
Data were censored based upon last known clinical follow-up, and patients 
with less than 1 month of follow-up were excluded from all survival analy-
ses. Supplementary Table 13 summarizes follow-up time, number of events, 
number of patients at risk and survival estimates for the entire population  
and patients assigned each CMS.

We performed Cox proportional hazards modeling in the aggregated data sets 
after confirming proportionality of hazards across patient cohorts. OS models 
included all stage I–IV patients, whereas both RFS and SAR analyses were lim-
ited to patients with stage I, II or III tumors at diagnosis. Both univariate and 
multivariate models were stratified by data set. We also performed univariate 
survival modeling separately in the subset of patients enrolled in the PETACC-
3 study10, as one can expect closer follow-up for relapse and death events in a 
clinical trial (Supplementary Fig. 11a). Detailed description of survival models 
can be found in Supplementary Table 13.

To evaluate the performance of survival models, we split the data sets into 
two-thirds and one-third for training and validation, respectively, and computed 
the time-dependent area under the curve (tAUC), which measures the ability to 
distinguish the individuals who will experience a relapse or death event. Results 
are summarized in Supplementary Table 13 and Supplementary Figure 11b. 
Indeed, when the CMS classification was added to multivariate clinico-molecular  
survival models, we still observe a significant discriminative contribution by the 
CMS subtypes in predicting outcome.

All survival analyses were carried out using ‘survival’ and ‘survAUC’ packages 
for R statistical software version 3.1.1 (ref. 69). We calculated log-rank P values 
in survival models and compared multivariate models with and without CMS 
classification by performing analysis of variance (ANOVA). Paired Student’s 
t-test was used to compare tAUC estimates.

Data, code sharing, and ‘CMSclassifier’ R package (random forest and single- 
sample predictor). As a resource for the community, for all public data sets 
used in the consortium, we have provided normalized gene expression data, 
CMS subtyping calls, and sample annotation for download through the Synapse 
platform (https://www.synapse.org/#!Synapse:syn2623706/wiki/). Additionally, 

http://app1.bioinformatics.mdanderson.org/tcpa/
http://app1.bioinformatics.mdanderson.org/tcpa/
https://www.synapse.org/#!Synapse:syn1710466
https://www.synapse.org/#!Synapse:syn1710466
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39582
https://www.synapse.org/#!Synapse:syn2623706/wiki/


©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

nAture medicinedoi:10.1038/nm.3967

scripts and code for the random forest CMS classifier are available for download 
(https://github.com/Sage-Bionetworks/crcsc).

We also provide a downloadable R package (‘CMSclassifier’) that includes 
the random forest classifier described previously, as well as a ‘single-sample 
predictor’ (SSP) classifier. By definition, an SSP makes it possible to predict 
a unique sample, and its output, considering any given sample, has to remain 
constant whether it is predicted alone or within a series of samples. A typical 
requirement of SSP is that they cannot be based on (intraseries) row-centered 
data, because row-centering is impacted by the composition of the series. Here 
the proposed SSP is multi-platform (RNA seq, single-color microarray or two-
color microarray) and as such doesn’t include any normalization procedure 
(such procedures are platform dependent), meaning that the user has to provide 
normalized data, with a normalization procedure respecting the single sam-
ple ‘spirit’ (such as single-sample frozen RMA for Affymetrix microarrays). Of 
note, the SSP reported here can be used on row-centered data with satisfactory 
results in most situations; however, in such a case it cannot be seen any more as 
a single-sample predictor.

The SSP is implemented in the ‘CMSclassifier’ R package. It is based on a 
similarity-to-centroid approach, with the Pearson coefficient as a similarity 
measure. It uses centroids of the CMS calculated for 693 discriminant genes 
(Entrez Ids), which were selected using the GSE39582 series on the basis of 
AUC and fold-change criterion. The CMS centroids were obtained for five series 
(TCGA COAD ‘RNASeq V2 GA’, TCGA COAD ‘RNASeq V2 HiSeq’, TCGA 
COAD ‘Agilent’, GSE39582 and E-MTAB-990), yielding 20 centroids Ci,j (i: CMS 
1–4; j: series 1–5). To classify a given CRC sample, the SSP first calculates the 
similarity Si,j of the CRC sample expression profile (for the 693 discriminant 
genes) to the 20 centroids. The minimal similarity Si to each CMS in the five 
series is then reported (Si = Minj = 1–5 Si,j). Then the nearest CMS i* is reported 
(Si* = Maxi = 1–4 Si). The similarity difference D between the two nearest CMSs 
is also reported (D = Si* − Si′, with i′ being the second-nearest CMS). Then if Si* 
is above 0.15 and D is above 0.06, the sample is classified in CMS i*, otherwise 
its label is ‘undetermined’.

The performance metrics of random forest and SSP classifiers using the con-
sensus network class as ‘gold-standard’ (n = 3,104 samples) is summarized in 
Supplementary Table 16.
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