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Precision oncology for acute myeloid leukemia
using a knowledge bank approach
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Underpinning the vision of precision medicine is the concept
that causative mutations in a patient’s cancer drive its biology
and, by extension, its clinical features and treatment response.
However, considerable between-patient heterogeneity in
driver mutations complicates evidence-based personalization
of cancer care. Here, by reanalyzing data from 1,540 patients
with acute myeloid leukemia (AML), we explore how large
knowledge banks of matched genomic—clinical data can
support clinical decision-making. Inclusive, multistage
statistical models accurately predicted likelihoods of remission,
relapse and mortality, which were validated using data from
independent patients in The Cancer Genome Atlas. Comparison
of long-term survival probabilities under different treatments
enables therapeutic decision support, which is available in
exploratory form online. Personally tailored management
decisions could reduce the number of hematopoietic cell
transplants in patients with AML by 20-25% while maintaining
overall survival rates. Power calculations show that databases
require information from thousands of patients for accurate
decision support. Knowledge banks facilitate personally
tailored therapeutic decisions but require sustainable updating,
inclusive cohorts and large sample sizes.

Led by a small number of high-profile successes, there has been con-
siderable enthusiasm for the concept of personally tailoring cancer
management based on individual genomic profiles':2. Mutations
in genes involved in cancer (hereafter referred to as cancer genes)
fundamentally drive a tumor’s growth, giving strong rationale for
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the belief that therapeutic choices made on the basis of these causative
events will be biologically sound. Applications of genomics in cancer
medicine include enhanced diagnostic accuracy through molecular
characterization, personalized forecasts of a patient’s prognosis and
support for choosing among different therapeutic options>#. There
are, however, complications to this narrative: only a few cancer
genes are straightforward therapeutic targets; many cancer genes are
only rarely mutated in a given tumor type; and each patient’s tumor
typically has several driver mutations. In addition to all of the other
complications is the challenge that, for most tumor types, there are
hundreds to thousands of different combinations of driver mutations
that have been observed across patients®”.

The promise of precision medicine has triggered considerable
funding commitments, such as the Precision Medicine Initiative in
the United States, Genomics England in the UK and similar efforts
in several other countries®’. Among the other aims, these initiatives
will build large banks of patients’ genomic data matched to clinical
variables, treatments and outcomes. Despite these investments reaching
hundreds of millions of dollars in scale, there has been little formal
evaluation of the potential utility of knowledge banks. In particular,
it is unclear whether accurate predictions about cancer outcomes
can be made from a large genomic-clinical database, what improve-
ments in survival at the population level might be achieved
from personally tailored therapeutic choices, and what sample sizes
knowledge banks need to accrue before predictions are sufficiently
accurate to underpin decision support for the individual patient.
Precision medicine requires therapeutic decisions that are fine-tuned
to the unique genome of an individual cancer, whereas evidence-
based medicine requires therapeutic decisions that are grounded on
documented, verified data.

Here we explore these questions by reanalyzing genetic data from
111 cancer genes, cytogenetic profiles and clinical data from 1,540
patients with AML who were undergoing intensive treatment!?,
and we validated this analysis using data from an independent
cohort of patients with AML from The Cancer Genome Atlas
(TCGA)!'. In our previous study'?, we identified 11 genomic sub-
categories of AML, each of which had a distinctive constellation of
clinical features. However, even within individual molecular sub-
groups, there remains considerable patient-to-patient variability
in treatment response and clinical outcomes, which could partially
be explained by cooperating driver mutations and other diagnostic
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clinical variables. At the population level, then, we can make strong
statements about overall patterns of long-term survival from such
data. At the level of a patient in the clinic who is faced with a difficult
therapeutic decision, however, it is not at all clear how such genomic
complexity affects the accuracy or relevance of predictions about
potential clinical outcomes for that patient.

AML presents an interesting exemplar for evaluating the potential
of precision medicine because of a real, current therapeutic dilemma—
the question of who should be offered an allogeneic hematopoietic cell
transplant (allograft) in first complete remission (CR1)!213, The equa-
tions are not straightforward. Allogeneic hematopoietic cell trans-
plants in CR1 undoubtedly decrease relapse rates for most patients,
but this comes at the cost of higher treatment-related mortality, which
can be as high as 20-25% at 3 months after transplantation versus
around 5% with conventional consolidation chemotherapy!4, with
a further 30% risk of debilitating chronic morbidity!>. Furthermore,
even though more patients relapse after chemotherapy in first remis-
sion, up to one-fifth of these can then be successfully salvaged with
allografts or more intensive chemotherapy!®1”. We use this particular
therapeutic dilemma to illustrate how a knowledge bank approach can
inform therapeutic decisions tuned to the specifics of an individual
patient, a concept that could be extended to other cancers, treatments
or clinical conundrums.

RESULTS

Predicting complex patient outcomes from genomic and
clinical variables

We recently sequenced!? all of the coding exons from 111 myeloid
cancer genes in diagnostic leukemia samples from 1,540 patients with
AML who were undergoing intensive treatment in three prospective
clinical trials of the German-Austrian AML Study Group (AMLSG).
We identified driver point mutations and combined these data with
the clinical trials database to generate a comprehensive knowledge
bank. Here we focused on evaluating the utility of the knowledge
bank for generating predictions that were personally tailored to the
individual patient, as well as how these predictions could be used to
compare the likelihoods of various clinical outcomes under different
treatment strategies. The full knowledge bank, together with all of
the analysis code used here, is documented in the Supplementary
Note and is available as a git repository (see “Data availability” in the
Online Methods).

Throughout, we used overall survival as the primary end-point
of these analyses, as the aim of intensive therapy in young patients
with AML is a cure. The full data set consists of 231 predictor
variables—which span the seven broad categories of fusion genes,
copy number alterations, point mutations, gene—gene interactions,
demographic features, clinical risk factors and treatment received—
across 1,540 patients. To assess the accuracy of our predictions, we
used the following validation strategies: (i) random cross-validation
on this data set; (ii) building models from any two clinical trials here
and testing on the third; and (iii) testing the model built from all three
AMLSG trials on an independent AML cohort from the United States
(TCGA)!". All predictions for individual patients reported here were
made using models that excluded data from that patient.

We tested a range of regularized regression methods for predicting
survival, and we also implemented novel random effects and multi-
stage statistical models, for deriving detailed associations between
genomic and clinical end-points (Fig. 1a and Supplementary Note).
Using a variety of accuracy measures, the random-effects models and
multistage models typically scored best in predicting overall survival,
roughly doubling the amount of explained variance as compared

to current prognostic criteria!? (Fig. 1b,c and Supplementary Note).
A key aspect of these approaches is that they include all available
variables in the model but shrink their estimated effects if there is
only weak support in the data, to control for overfitting. In contrast,
conventional methods typically choose reduced subsets of 5-20
variables, seemingly at the cost of discarding prognostically relevant
information (for more discussion, see the Supplementary Note).

Reassuringly, we found strong ‘out-of-cohort” validation for our
models, either when models built using this cohort were tested on
the TCGA cohort or when models using two of the three trials in
the knowledge bank were tested on the third trial (Fig. 1a). Of
particular note is the observation that concordance decreased
only moderately for predictions from a model trained on younger
patients (AMLHD98A and AMLSG0704: age range, 18-65 years) that
was evaluated on a trial of older patients (AMLHD98B: age range,
58-84 years). This implies that many of the differences between age
groups in AML outcomes are captured in clinical and genetic variables
and can therefore be learned from the knowledge bank.

The multistage model offers the advantage of separating long-term
outcomes into individual constituents—death without complete
remission, death in CR1 without relapse (non-relapse mortality,
which is mostly treatment related) and death after relapse, as well as
survival during induction therapy, survival in CR1 and survival after
relapse (Fig. 2a-c). As we demonstrate, understanding which of these
constituent outcomes is especially likely for a patient considerably
enhances therapeutic decision-making. The added detail does not
come at the cost of overfitting, as the combined prediction of overall
survival in the multistage model yields the same accuracy as predict-
ing overall survival directly (Fig. 1a).

Personally tailored prognosis

The models for predicting outcome that were developed here are con-
siderably more complex than those currently used in clinical practice.
In AML, the current standard is the European LeukemiaNet (ELN)
genetic scoring system!3, which defines four categories of disease
risk based on six fusion genes, three genes with point mutations and
cytogenetic abnormalities. We explored how much more informative
our more complex prognostic models are than the ELN system.

We found that individual risk in this AML cohort was continu-
ous, with no obvious cutoff points for stratification, suggesting that
grouping patients on the basis of a few predictor variables discards a
lot of prognostic information (Fig. 2d). Our more detailed survival
estimates confirmed the broad trends of known ELN risk groups;
however, one-third of the patients had survival predictions that devi-
ated more than 20% from their ELN stratum (Fig. 2e).

From the multistage model, we can quantify how much the various
classes of predictor variables contribute to explaining patient-
to-patient variation in each possible end-point of treatment (Fig. 2f
and Supplementary Tables 1-6). We found that clinical and demo-
graphic factors, such as patient age, performance status and blood
counts, exerted the most influence on rates of early death, includ-
ing death in remission (mostly due to treatment-related mortality).
Genomic features, such as copy number changes, fusion genes or
driver point mutations, most strongly influenced the dynamics of
disease remission and relapse.

These estimates represent the contributions of the various catego-
ries of predictors to outcomes of treatment at the population level.
At the individual level, we can score each patient for his or her risk
along these dimensions of predictor variables. What emerged was
considerable heterogeneity in personal risk profiles across the cohort
(Supplementary Fig. 1). The heterogeneity of the risk profiles and
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Figure 1 Systematic comparison of models. (a) Top, concordance, C, of
predictions for overall survival from different models. For cross-validation
analyses (gray), we generated 100 training and test sets by randomly
splitting the full data set. The distribution of concordance values across
the 100 random sets is shown as a box-and-whiskers plot. Also shown are
point estimates with error bars for predictions evaluated on prespecified
splits of the data set, in which the training set represented two of the
three trials in the study (AMLHD98A, AMLHD98B and AMLSG0704)
and the test set was the third trial (red, blue or green), or in which the
training set was the full AML data set with the test set being the TCGA
cohort (purple). Predictions for the multistage model are evaluated

3 years after diagnosis. Bottom, using the 100 random cross-validation
splits, each of the ten predictive model classes was built on the training
set and evaluated on the test set. The ten models were ranked on the
basis of their relative performance on the test set and the ranks across
the 100 cross-validation splits were aggregated, indicating how often
each model scored best (1) to worst (10). Time-dependent models
include allogeneic hematopoietic cell transplants, which are treated as

a time-dependent covariate to avoid bias. ELN, European LeukemiaNet
genetic scoring system!3; rForest, random survival forest?®; BIC and

AIC, Cox proportional-hazards regression with stepwise variable selection
based on the Bayesian information criterion (BIC) or Akaike information
criterion (AIC), respectively; CPSS, complementary-pairs stability
selection; RFX, Cox proportional-hazards model with random effects.

(b) Coefficient of determination R? for leave-one-out predictions using
time-dependent random effects and multistage predictions of the AMLSG
cohort (n=1,540), evaluated at each time point (x axis). (c) As in b,
except for data from TCGA (n = 186).

the variable effect they had on the different AML outcomes combined
to generate a kaleidoscope of predictions for the patients’ journeys
through therapy (Fig. 3). Thus, there are distinct groups of patients
for whom we can confidently predict long-term survival in first
remission, death after relapse or death without achieving remission,
which manifested as swathes of purple, green and pink, respectively,
in Figure 3. Reassuringly, these predictions were consistent with the
actual outcomes in the patients (status lines and circles in Fig. 3).
It is these patients, for whom one color dominates, that are highly
likely to have a defined outcome. There are, however, some patients
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for whom there is genuine uncertainty about outcomes, even with
the full model. These patients have predicted survival curves that
deviate little from the population average.

Personally tailored therapeutic decision support

The preceding sections showed that a knowledge bank can provide
meaningful information about a patient’s prognosis. The goal of
precision medicine is more ambitious than this, however, in seeking
to inform the choice of therapy for an individual patient. In AML,
a major therapeutic dilemma is deciding which patients should be
offered allogeneic hematopoietic cell transplants (allografts) and
whether this should be in CR1 or after relapse!>!3. With a transplant-
associated mortality rate of 20-25% and substantial rates of chronic
graft-versus-host disease, allografts tend to be reserved for high-
risk patients. We explored how a knowledge bank could inform the
decision to choose allograft versus chemotherapy in first remission
for the individual patient with AML.

Our calculations have shown that using a knowledge bank to
model patient outcomes reclassifies the risk estimates of a substantial
fraction of patients (Fig. 2e). A given patient’s risk prediction rep-
resents an aggregation across multiple facets of the disease. Thus,
two patients can both have an overall intermediate probability of
death but can arrive at this probability value through different risk
contributions: one patient might be older and more frail but have
a leukemia with generally favorable genomic features, whereas the
other might be young and fit but with a leukemia carrying adverse
driver mutations. Intuitively, a clinician will favor the more inten-
sive allogeneic transplant option in the latter, fitter patient and prefer
standard chemotherapy in the older patient who is at higher risk of
treatment-related mortality.

We illustrate these calculations using two patients from the cohort
(Fig. 4; other representative patients are illustrated in Supplementary
Fig. 2). The first (PD11104a) was a 29-year-old woman with chromo-
somal translocation t(8;21) and no other driver mutations, who would
have been classified as having ‘favorable risk’ by ELN criteria!3. Under
a strategy of chemotherapy in CR1 with salvage allograft after relapse,
we predicted her chance of 3-year survival to be 86% (95% confidence
interval (CI) = 78-91%) (Fig. 4a). In contrast, with an allograft in
CR1, we estimated her overall cure rate to be 88% (95% CI = 79-93%)
(Fig. 4b), with the decrease in probability of relapse matched by the
increase in non-relapse mortality with a transplant. Hence, there is
no indication for an up-front allograft for this patient, with only a
two-percentage-point difference in predicted survival (95% CI = —
to 7%). For this patient, therefore, the treatment recommendation
under current clinical standards!? would remain unchanged using a
knowledge bank approach.

The second patient (PD8314a) was a 49-year-old male with mutations
in NPM1I (nucleophosmin), DNMT3A (DNA methyltransferase 30.)
and IDH] (isocitrate dehydrogenase (NADP®) 1), and a normal kary-
otype. Under ELN criteria, his risk also classifies as favorable, and
he would not currently be recommended for allograft in CR1. With
standard chemotherapy as first-line therapy, we estimated his 3-year
survival probability to be 55% (95% CI = 41-67%), as compared to
68% (95% CI = 55-77%) for allograft in CR1 (Fig. 4c,d). Thus, his
disease was not especially of favorable risk when all of the predictive
information was considered. Furthermore, the absolute risk reduction
associated with an up-front allograft was estimated at 13 percentage
points (95% CI = 3-24%). Thus, the number needed to treat (NNT)
is 7 patients (95% CI = 4-26): that is, 1 additional person would be
cured for every 7 equivalent patients treated with allograft instead of
standard chemotherapy in first remission.
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Treatment choices from knowledge banks versus current practice
The cases shown in Figure 4 illustrate that some, but not all, patients
would have had their treatments changed using a knowledge bank in
comparison to the current recommendations. It is therefore natural
to assess how many patients would have had their treatment altered

under such an approach, and whether the predictions could accurately
reflect what actually happened to the patients.

On average, we found that patients who were predicted to have poor
prognosis, defined as having more than 60-70% chance of mortality
at 3 years, were most likely to benefit from allogeneic transplantation
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Figure 2 Multistage modeling of patient fate. (a) Multistage model of patient trajectories. The six colored shapes correspond to different stages
during treatment, with five possible transitions (solid arrows). The number in each shape corresponds to the total number of patients who entered

a given stage during follow-up. (b) Sediment plot showing the fraction of patients in a given stage at a given time after diagnosis. The thick black line
denotes overall survival, which is the sum of the deaths in patients without complete remission (red), with non-relapse-associated mortality (blue) and
with mortality after relapse (green). (c¢) Schematic of multistage regression. The model estimates the log-additive effect of each of 231 prognostic
variables on the transition rates for all five possible time-dependent transitions shown in a. Rate changes were modeled by Cox proportional-hazards
models with random effects. (d) Cross-validated model performance, with concordance, C, indicating that the survival times at 3 years after diagnosis
were correctly ranked by the model. Similarly, at 3 years after diagnosis, only 28% of patients were incorrectly predicted to be alive or dead.

(e) Mosaic plot of predicted 3-year survival across ELN categories. The height of each bar denotes the fraction of patients in each quarter of survival
for each ELN group, and the width of each bar is proportional to the percentage of patients in each ELN group. Inter-1 and inter-2 denote subgroups
with intermediate outcomes in the ELN classification. The number of patients in each group was as follows: favorable, 473; inter-2, 268; inter-1, 417;
adverse, 253; missing, 129. (f) Relative importance of risk factors for different transitions. The concordance, C, is shown as a percentage across

the bottom of the bar chart. The number of patients in each group is the same as in a. CNAs, copy number alterations.
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Figure 3 Multistage outcome predictions for 1,024 patients. Cross-validated risk predictions and observed status for 1,024 patients are arranged along

a Hilbert curve. This visualization has the property that patients with similar

AML subtypes and risk constellations are grouped together in 2D space

(compare to Supplementary Fig. 1 for constellations of risk factors). For each individual patient, the survival curves predicted by the multistage model
are shown, with the competing outcomes colored as in the legend and Figure 2b. What actually happened to the patient is shown as a line across the
base of the graph, with a filled circle indicating that the patient died (color denotes the mode of death). Note that there are many patients for whom
one color dominates the diagram, indicating that the probability that a particular event occurs is very high. Reassuringly, for such patients, the observed
outcomes are highly concordant with the cross-validated predictions and occur at frequencies matching the predicted probabilities.

in first remission (Fig. 5a), a finding that was captured in current
clinical recommendations. However, there was a considerable spread
in patient estimates around the population average. This variance
around the average is critically important for precision medicine
because it suggested that population-based criteria for treatment
choices only poorly capture the predictive information available for
the individual patient.

Overall, we estimated that 12% (124/995) of patients in CR1 aged
18-60 years would have more than a 10-percentage-point improvement

in survival at 3 years with an allograft in CR1 as compared to standard
chemotherapy (NNT < 10; Fig. 5b). Only 29 of these 124 patients were
identified as having ‘adverse risk’ by current criteria, with most being
of ‘intermediate risk’ and some even of ‘favorable risk’. Furthermore,
57% (302/534) of patients who were classified as having adverse or
intermediate risk by ELN criteria, and therefore strongly considered
for allograft in CR1 under current clinical reccommendations!'3, were
predicted to derive less than a 5-percentage-point improvement in sur-
vival from up-front allografts. Similarly, 15% (58/386) of patients with
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Figure 4 Individualized risk exemplified for two patients. (a,b) Sediment
plots showing predicted multistage probabilities after remission for patient
PD11104a under a management strategy of standard chemotherapy in
CR1 with intended allograft after relapse (a) or allograft in CR1 (b).

The patient was alive at the last follow-up 3.5 years after achieving CR1.
(c,d) Sediment plots showing predicted multistage probabilities after
remission for patient PD8314a under a management strategy of standard
chemotherapy in CR1 with intended allograft after relapse (c) or allograft
in CR1 (d). The patient relapsed 1.2 years after CR1 and died soon after.
Predictions shown are based on models in which the given patients

were excluded from the training data set; the bar at the bottom denotes
the observed outcome (as for Fig. 3). Numbers at the bottom correspond
to the probability of non-relapse death (NRD), post-relapse death (PRD)
and being alive after relapse (AAR) at years 1 to 5 after achieving
complete remission. Details of these calculations are presented

in the Supplementary Note; data for additional patients are shown

in Supplementary Figure 2. Allo-HSCT, allogenic hematopoietic

stem cell transplant; NK, normal karyotype.

favorable risk by ELN criteria were predicted to have a >5-percentage-
point improvement in expected survival with a bone marrow trans-
plantin CRI1. Clearly, then, treatment management in up to one-third
of patients might be changed with a knowledge bank approach relative
to the recommendations provided by current practice guidelines.

We next compared the therapeutic predictions made by our model
with what actually happened to the patients under the two different treat-
ment strategies (Fig. 5c and Supplementary Fig. 3). We split the cohort
into two groups depending on whether the patients were predicted to
derive more or less than a 10-percentage-point improvement in survival
with allograft in CR1 as compared to chemotherapy in CR1 and allograft
after relapse. If our model was correctly identifying those patients who
were most likely to benefit from a transplant, then the survival curves
in this group should show distinctly better outcomes for allograft in
first remission than those for chemotherapy. This was indeed what we
observed (Fig. 5¢, blue lines). For the patients for whom our model
predicted minimal or no benefit from an up-front transplant strategy, we
did indeed find that there was little meaningful difference in the survival
curves between those patients who received a transplant and those who
received chemotherapy in first remission (Fig. 5¢, gray lines).

Taken together, these data demonstrate that up to one-third of
patients would have had their treatment altered using a knowledge
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Figure 5 Benefit of allograft in CR1 versus allograft after relapse.

(a) Predicted 3-year absolute mortality reduction in patients who received
allografts in CR1 versus those who received standard chemotherapy

in CR1 and allografts after relapse (y axis). Calculations are based

on patients who were <60 years old in CR1 (n=995) and who would

be eligible for allogeneic transplant. The black curve represents the
population average, with the 95% confidence interval in gray. Points
denote individual patients in the cohort, colored by risk category as
determined by ELN criteria. (b) Mosaic plot of 3-year survival benefit
from an allograft in CR1 relative to standard chemotherapy after CR1
versus ELN risk category. The predicted benefit was discretized into four
groups, indicated by color, with intervals of 5%. The number of patients
in each ELN group was as follows: favorable, 386; inter-2, 160; inter-1,
257; adverse, 117; missing, 75. (c) Kaplan—Meier curves for patients
with high (>10%; blue) and low (<10%; gray) predicted benefit from
receiving an allograft in CR1 (cross-validated), with and without receipt
of an allograft in CR1. Patients with favorable ELN risk were excluded.
(d) Predicted overall survival at 3 years after CR1 as a function of the
total number of allografts performed (in CR1 + after relapse). Patients
were first ranked from those most likely to benefit from transplant to
those least likely to benefit, as judged by current guidelines (blue line)
or our current knowledge bank (red line). The curves show expected
survival if the fraction of patients receiving allografts in CR1 increases
from 0% to 100%, starting with the patient with the greatest predicted
benefit and ending with the patient with the lowest predicted benefit.
The x axis starts at ~0.25, as about 50% of patients will relapse
without an allograft in CR1, of whom about 50% manage to undergo
post-relapse transplantation.

bank approach as compared to the treatment they received using
current practice recommendations!3. Furthermore, the predictions
made using the knowledge bank matched well the actual outcomes
observed under the two different treatment philosophies, confirming
the accuracy of the decision support.

Population effect of a knowledge bank approach

Knowledge banks would be costly to build and maintain, and it
is therefore important to evaluate whether the overall impact of
improved treatment choices at the population level would justify
this outlay. The effect in patients with AML could be expressed as
either the improvement in expected survival for a fixed number of
allografts in CR1 or the reduction in the number of allografts in CR1
needed to achieve the same overall survival (Fig. 5d). In the United
States, ~30% of patients with AML receive an allograft!8. If the 30% of
patients to receive an allograft in CR1 were chosen using an optimal
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knowledge bank rather than current recommendations, we estimate
that survival rates across the cohort would increase ~1.3 percentage
points (from 60% to 61.3%).

Alternatively, personally tailored management decisions could
reduce the number of hematopoietic cell transplants in patients with
AML by 20-25% while maintaining the same overall survival rates.
Under current practice, 44% of young adult patients would receive a
transplant (30% in CR1 plus 14% after relapse). In contrast, by using
a knowledge bank approach to choose when and whom to give a
transplant, 35% of patients overall would receive an allograft (16% in
CR1 plus 19% after relapse) to achieve the same overall survival rate
of 60%. Similar overall gains from a knowledge bank approach were
found across a range of assumptions for risks and benefits of receiving
a transplant (Supplementary Fig. 4).

We can express the effect of a knowledge bank approach at the pop-
ulation level in terms of quality-adjusted life years (QALYs). Health
utilities, which measure the quality adjustment factors for survival,
have previously been estimated to be 0.74 for the survival of patients
with AML who received an allograft and 0.83 for the survival of those
who did not receive a transplantlg, and the cost of an allograft has
been estimated to be $100,000-200,000 (ref. 20). Thus, an increase of
1.3 percentage points in long-term survival while maintaining a 30%
allograft rate in CR1 corresponds to ~0.1 QALY gained per patient
over 10 years. Alternatively, reducing the number of allografts by bet-
ter resource allocation while maintaining overall survival rates would
result in a gain of ~0.05 QALYs per patient over 10 years, as well as
saving approximately $10,000 per patient.

Portals for exploring decision-support predictions

The preceding sections demonstrated that the complex and multifac-
torial inter-relationships among genomic variables, clinical predictors
and cancer outcomes can be learned with a sufficiently comprehensive
knowledge bank. Because the underlying survival models are com-
plex, diagnostic laboratories may need to provide personalized portals
into a given patient’s cancer genome.

Our data set is not appropriate for direct clinical use, as the algo-
rithm has not yet been prospectively validated and sequencing was
performed using a research pipeline. Nonetheless, as a research tool,
we have created a prototype portal within our website?! (http://cancer.
sanger.ac.uk/aml-multistage) that allows outcome predictions to
be generated based on this data set for user-defined constellations
of genomic features, clinical variables and treatment strategies
(Supplementary Fig. 5). The underlying algorithm is capable of
imputing missing variables and computing confidence intervals for
each prediction.

The knowledge bank
We explored how both the breadth of genomic profiling and the sample size
of the knowledge bank affect the accuracy of outcome predictions for indi-
vidual patients. The explained risk grows linearly with the average number
of driver mutations present in each patient (Supplementary Fig. 6a),
a relationship underpinned by theoretical arguments (Supplementary
Note). Some genes, by virtue of their frequency and/or the magnitude
of their prognostic effect, are more informative than others. We ranked
genes involved in AML by their predictive utility (Supplementary Fig. 6b)
to address the question of how much improvement in prognostic infor-
mation comes from increasing the number of genes interrogated. The
effects of missing mutation data on the confidence intervals of patient
prediction can be explored in the web portal.

The other critical factor for accurate risk profiling is the sam-
ple size of the knowledge bank. Using subsampling analyses and
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Figure 6 Extrapolations and power calculations. (a) Subsampling to

a lower number of patients (x axis) shows a steady but saturating

increase in prognostic concordance, C (y axis), with increasing sample size
for a random-effects model of overall survival. Error bars correspond to
the 95% confidence intervals for the concordance obtained from multiple
independent subsamples of the data set. (b) Graph relating the effect size
(hazard ratio) of a prognostic variable to the absolute number of patients
with the given factor that were required to reach significance in a random-
effects model for overall survival (solid line, P < 0.05; dashed line,

P < 0.001). (c) Average prediction error between simulated and estimated
survival in a random-effects model for overall survival as a function of
survival time (x axis) and size of the training cohort (y axis).

simulations from the AML data, we found that prognostic accuracy
steadily increased with larger sample sizes, although it followed a
law of diminishing returns (Fig. 6a). As a rule of thumb, to detect a
moderate-sized prognostic effect for a given cancer gene, for exam-
ple, an increase of 50% in relative risk, the knowledge bank needed
~50-100 patients with that mutation (Fig. 6b and Supplementary
Fig. 7a). Thus, for a gene mutated in 10% of patients, a training set
of 500-1,000 patients would suffice, but for a gene mutated in 1% of
patients a cohort of 5,000-10,000 would be needed. These simulations
matched theoretical expectations?>?3 (Supplementary Fig. 7b and
Supplementary Note).

The standard error of individual survival predictions 3 years after
CR1 is about 6%. When using predictions for supporting therapeutic
decisions about a specific patient, this uncertainty limits the ability
to confidently discriminate small differences in survival. With 1,000
cases, we could achieve an average absolute prediction error for an
individual patient of approximately 5 percentage points, which could
be brought down to 2 percentage points with 10,000 cases (Fig. 6¢).

DISCUSSION

Here we have evaluated the promise of precision medicine, building
statistical models that can generate personally tailored clinical deci-
sion support from all of the available prognostic information in a
knowledge bank. From a database of 1,540 patients, we were able to
make considerably more informative and accurate statements about
an individual’s likely journey through therapy for AML than we were
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ANALYSIS

with the current standards in clinical practice. Our approach enabled
us to compare the likelihood of favorable outcomes under different
treatment scenarios, providing information that could support genu-
inely personalized decision-making.

Although we have focused on AML in this analysis, we believe
that the same logic will apply to knowledge banks from other cancer
types, which will be generated as genomics enters healthcare and as
healthcare becomes digitized. Most cancer types are lethal, and most
currently available treatment options are either invasive or toxic, bur-
dening the patient with severe side effects. Therefore, quantitative
risk assessment is important in any cancer type to reserve the most
aggressive treatments for the patients who are at the highest risk of
dying from the disease. All cancers are caused by genetic changes,
with considerable heterogeneity among patients, and it is therefore
likely that these genetic differences also correlate with differences
in outcome, although the details of the logic and strength of asso-
ciation may vary among cancer types. After knowledge banks are
established and ideally populated with information about different
treatment options—whether these be chemotherapy, targeted inhibi-
tors or immunotherapies—one can apply the logic outlined here to
assess the benefit of these treatments, which can be contrasted with
the patient’s baseline risk.

Building and maintaining clinical-genomic knowledge banks is a
formidable challenge, especially for solid tumors in which the genome
can be considerably more complex than that of AML. Initially, knowl-
edge banks could be seeded from clinical trial cohorts, as we did
here, as these will have high-quality clinical data and state-of-the-
art therapies. Our power calculations suggested, however, that most
clinical trials would not be powered to detect gene-drug interac-
tions involving genes that are mutated in <20% patients. Additionally,
knowledge banks will need to include patients who are representative
of the wider cancer population to enable meaningful extrapolation
to real-world clinical practice. This suggests that building systems to
incorporate data from patients undergoing routine clinical care into
the knowledge bank will be important.

Whether the returns justify this investment will be a contentious
issue. Here we have illustrated that a reallocation of allografts could
increase survival by 1.3 percentage points. We should not be surprised
at how modest the gain is—for the bulk of patients, we predicted
only small improvements in survival with early allograft (Fig. 5b).
What may be more important is the more accurate use of a precious
resource, as we could potentially reduce the number of allografts per-
formed in patients with AML by 20-25% while maintaining the same
overall rate of survival as for the current treatment recommendations.
Hence, the availability of a knowledge bank would increase quality
of life by reducing morbidity from chronic graft-versus-host disease,
and, at a cost of $100,000-200,000 per allograft?’, the potential mon-
etary savings would far outstrip the costs of the genomic screens.
Moreover, the utility of a knowledge bank likely goes beyond these
reasons by informing potential drug targets, identifying patients who
are not benefitting from current treatments and providing insights
into the relationships between genetic and clinical features.

There is a tension between maintaining the precepts of evidence-
based medicine and sharpening the focus on the individual with pre-
cision medicine?*. Here we have demonstrated how knowledge banks
can resolve this tension, using the evidence base from thousands of
patients to inform outcomes for the individual. The therapeutic choice
we exemplified is binary, constituting transplant versus chemotherapy
in patients with AML. The success of inhibitors of the tyrosine kinase
FLT3, whose gene is frequently mutated in patients with AML, will
increase the number of available treatment options??, and the discovery

or clinical development of other agents will add further complexity.
Knowledge banks could be a useful tool for clinicians navigating
this complexity, but they must remain dynamic and up to date as the
therapeutic armamentarium expands and as molecular understand-
ing of cancer deepens. The logistical and regulatory hurdles, the scale
needed and the costs of such an undertaking are daunting but not
insurmountable challenges.

METHODS

Methods, including statements of data availability and any associated
accession codes and references, are available in the online version of
the paper.

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper.
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ONLINE METHODS

Patient cohort. Here we reanalyzed data that were first reported and described
in detail by Papaemmanuil et al.1% Briefly, we performed targeted gene
sequencing of 111 myeloid cancer genes!"27-2% using DNA from leukemic cells
in a cohort of 1,540 adults with AML who were treated with intensive therapies
in three clinical trials run by the German-Austrian AML Study Group3°-32,
In AML-HD98A, patients aged 18-61 years received induction chemotherapy
with idarubicin, cytarabine and etoposide (ICE), followed by allogeneic
transplants for intermediate-risk patients with matched related donor and
high-risk patients; intensive consolidation chemotherapy for the remainder.
Treatments were similar in AMLSG-07-04 but included randomization for
all-trans retinoic acid (ATRA) therapy or not in induction chemotherapy.
In AML-HD98B, patients >61 years received ICE + ATRA, with further
therapy dictated by response. Median follow-up was 5.94 years. All patients
gave written informed consent for enrollment in the multicenter trials, which
were approved by the local research ethics committee of each participating
site (ClinicalTrials.gov number: NCT00146120).

Statistical methods. We explored a range of statistical methods to build
models of overall survival3*34, including random survival forest regression,
stepwise Cox proportional-hazards model selection with either AIC or BIC
penalty, complementary pairs stability selection based on LASSO-penalized
Cox proportional-hazards models, random-effects models with Gaussian
random effects/ridge penalties, and random-effects multistage models
(Supplementary Note, subsections 2-4). We found little prognostic significance
in whether the mutations were subclonal or clonal (Supplementary Note),
and we therefore did not consider this information in the multivariate models.
All of the predictions shown were based on a leave-one-out basis; it was there-
fore informative to compare each prediction with the observed outcome in a
given patient. All predictions for individual patients reported here were made
using models excluding that patient.

For estimating the population-level impact of the knowledge bank approach,
we divided patients into two groups, based on whether they were expected to
derive more or less than a 10-percentage-point improvement in survival with
allograft in CR1 as compared to that with chemotherapy in CR1 and allograft
at relapse. In each group, the observed outcomes were then determined sepa-
rately for those patients who actually received an allograft in CR1 and those
who proceeded with standard chemotherapy in CR1. In the ideal knowledge
bank, the treatments used would be randomized, as this would ensure that

they were not confounded with the predictor variables that we used. Here,
711/1,540 (46%) of patients received an allograft, with the decision to perform
a transplant in intermediate-risk patients based on whether a matched related
donor was available32. This introduces a quasi-randomization, as human leu-
kocyte antigen (HLA)-matching between siblings derives from Mendelian
assortment of parental alleles, but this cannot substitute for the prospective
validation of the decision support tools we developed.

All of the predictions for individual patients reported here were made
using models excluding that patient. To maximize reproducibility, details
of statistical methods and all of the analysis code used are provided in the
Supplementary Note and as a git repository online.

Data availability. Sequencing data that support the findings of this study have
been deposited in the European Genome-phenome Archive under accession
EGAS00001000275. The exploratory web application to visualize and explore
the data is found at http://cancer.sanger.ac.uk/aml-multistage. The clinical
data and summarized driver-mutation calls are available in a Github repository
(http://www.github.com/gerstung-lab/aml-multistage), together with all of the
code used to generate the figures and conclusions of the manuscript.
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