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Abstract

The vast array of in silico resources and data of high throughput profiling currently available in life sciences research offer
the possibility of aiding cancer gene and drug discovery process. Here we propose to take advantage of these resources to
develop a tool, TARGETgene, for efficiently identifying mutation drivers, possible therapeutic targets, and drug candidates in
cancer. The simple graphical user interface enables rapid, intuitive mapping and analysis at the systems level. Users can find,
select, and explore identified target genes and compounds of interest (e.g., novel cancer genes and their enriched biological
processes), and validate predictions using user-defined benchmark genes (e.g., target genes detected in RNAi screens) and
curated cancer genes via TARGETgene. The high-level capabilities of TARGETgene are also demonstrated through two
applications in this paper. The predictions in these two applications were then satisfactorily validated by several ways,
including known cancer genes, results of RNAi screens, gene function annotations, and target genes of drugs that have
been used or in clinical trial in cancer treatments. TARGETgene is freely available from the Biomedical Simulations Resource
web site (http://bmsr.usc.edu/Software/TARGET/TARGET.html).
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Introduction

Intensive use of cytotoxic agents in multimodal therapies has

improved five-year disease-free survival and even resulted in cure

for some cancer patients. This success can be associated with

severe toxicities and an increased occurrence of secondary cancers.

The emergence of targeted therapies directed against dysregulated

or mutated genes/proteins in malignant cells represents a

paradigm shift in cancer therapy, with less reliance on drugs that

kill normal cells as well as tumor cells. Examples include therapies

against HER2 overexpressed breast cancers (such as Trastuzumab

and Lapatinib), c-Kit-targeted therapy in BCR-ABL defective

leukemias (Gleevec), and VEGF/VEGF-R-targeted compounds

for inhibiting cancerous angiogenesis (such as Bevacizumab).

While high throughput technologies such as microarray and next

generation sequencing can now be used to identify hundreds or

thousands of candidate genes that are differentially expressed or

mutated in cancerous versus normal tissues, it is difficult to

prioritize potential cancer therapeutic targets from such a large

number of candidate genes.

A systematic studying of the complex regulatory pathways is

required to understand the mechanisms of oncognesis to discover

mutation drivers or develop effective therapies. Several pathways

have been found to be deregulated in cancer cells due to the over-

expression or repression of some control elements [1]. But, the

findings of pathways to date have been very limited. The vast

array of high-throughput techniques and public domain data

resources more recently available, offers the possibility of

understanding cellular mechanisms at a systems level and thus

aiding in drug discovery [2–5]. Several rigorous statistical

approaches have been developed to infer cellular and molecular

networks via an integrated analysis of these resources [6–10]. We

have also previously introduced a Relevance Vector Machine

(RVM)-based ensemble approach, designed for large-scale learn-

ing problems, and used it to integrate multiple heterogeneous data

sources to construct a human gene network that can reveal gene-

gene functional relationships [11]. The RVM-based ensemble

model yields improved performance on large-scale learning

problems with massive missing values in comparison to Naı̈ve

Bayes, the most popular method used to predict protein-protein

interactions and genetic interactions [6–10].

Several concepts also have led to the development of network-

based approaches to predict novel disease genes in molecular

networks [12,13,14]. Genes associated with similar disease

phenotypes tend to be group together in a molecular network.

Thus, genes that are found to be associated with known disease

related genes in the networks are themselves more likely to be

involved in the same disease process [12]. In addition, in view of

the complexity in cancers, potential therapeutic targets can be

those genes/proteins that have a critical role in regulating multiple

pathways or maintaining those malignant phenotypes [15]. It has

been recently reported that cancer-associated genes are more likely

to be signaling proteins that act as hubs, actively sending or

receiving signals through multiple pathways [16,17]. Broader use
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of these concepts and constructed molecular networks would be

promoted by the availability of tools that allow easy identification

of potential therapeutic targets for specific cancers.

Broader use of such constructed molecular networks and

network-based approaches would be promoted by the availability

of tools that allow easy identification of potential therapeutic

targets for specific cancers. This report thus introduces the

software tool TARGETgene that utilizes a constructed gene

network that integrates multiple genomic and proteomic data

using the RVM-based model [11] to allow users to conveniently

identify potential therapeutic targets for a particular cancer. The

network contains not only direct molecular interaction informa-

tion but also broader gene-gene functional relationships. In

addition, by integrating drug-target information compiled from

recently available public databases, such as DrugBank [18],

PharmGKB [19] and the Therapeutic Target Database [20],

TARGETgene allows identification of possible drug candidates for

cancer treatments. Users can find, select, and save identified target

genes & drugs of interest (e.g., selecting novel cancer genes) via

TARGETgene. Through integrating resources from several public

databases, TARGETgene also enables users to explore molecular

functions, related literature, and enriched biological processes of

their selected target genes. Moreover, TARGETgene also provides

a way for users to validate their predictions using user-defined

benchmark genes (e.g., target genes detected in RNAi screens) and

curated cancer genes. In this report, the high-level capabilities of

TARGETgene are demonstrated through two applications in this

paper: identification of potential therapeutic targets from differ-

entially expressed genes and identification of mutation drivers.

The predictions in these two applications were satisfactorily

validated in several ways, including known cancer genes, results of

RNAi sreens, gene function annotations, and target genes of drugs

that have been used or in clinical trials.

Methods

Construction of Gene-Gene Functional Relationship
Network

Seventeen heterogeneous genomic and proteomic data were

integrated using the RVM-based ensemble model reported in [11]

in order to construct a gene functional network (as detailed in the

section 1 of Text S1). The nodes in this network represent all genes

of the human genome, and the functional association between any

two of them is quantified by a gene-pair linkage probability that

can reveal the tendency of genes to operate in the same or similar

pathways. Thus, this network contains not only direct molecular

interaction information but also broader functional genetic

relationships in pathways. This network can be applied to

investigate diverse biological questions in health and disease,

including exploring gene functions, understanding complex

cellular mechanisms, and identifying potential therapeutic targets.

TARGETgene uses this gene network to map and analyze

potential therapeutic targets at the systems level.

Identification of Potential Targets using Network-Based
Approaches

Based on the constructed gene network, TARGETgene

identifies potential therapeutic targets using one of two network-

based metrics: 1) hub score or 2) seed gene association score (as

detailed in the section 2 of Text S1). Two centrality measurements,

weighted degree centrality and weighted eigenvector centrality,

provided in TARGETgene can quantify the tendency of a gene to

be a hub in the tumor-specific network that is generated by

mapping candidate genes in a tumor to the constructed gene

network. TARGETgene also allows users to identify important

cancer genes or potential therapeutic targets by associating them

with user-defined seed genes (e.g., known cancer genes) in the gene

network. More specifically, the importance of each candidate gene

is calculated as summation of its direct functional association with

those seed genes. All the candidate genes are ranked based on their

hub score or their seed gene association score. Those highly

ranked genes in the prediction are identified as possible important

cancer genes and thus potential therapeutic targets. Drug-target

information is then mapped to candidate genes. Drugs whose

target genes are highly ranked in the prediction can also be

considered as potential therapies.

Overview of TARGETgene
The graphical user interface of TARGETgene consists of four

main working panels, including Input, Implementation, Gene, and

Drug panels (Figure 1A and 1B). The Input Panel enables users to

define the cancer type (currently: breast cancer, colon cancer,

Ewing’s sarcoma, glioblastoma, lung cancer, ovarian cancer, and

prostate cancer) and candidate genes, as well as the desired

ranking metric (hub score or seed gene association score) as

illustrated in Figure 1A. The Implementation Panel allows the user

to generate new predictions, save results and load existing results.

The Gene Panel lists information on all candidate genes including

their rank in predictions, as well as cancer literature citation

number. Cancer literature citation information of genes was

compiled from Entrez Gene (ftp://ftp.ncbi.nih.gov/gene/).

Through this panel, the user also can find, select identified target

genes (e.g., selecting novel cancer genes), and explore their

functions, cited literature as well as enriched biological processes.

In addition, TARGETgene enables users to validate their

predictions using user-defined benchmark genes (e.g., target genes

detected in RNAi screens) and curated cancer genes via this panel.

Finally, drug and their target information compiled from several

public databases, such as DrugBank [18], PharmGKB [19] and

the Therapeutic Target Database [20], is also integrated to

TARGETgene for reporting those drugs/compounds that could

have action on the targets identified by TARGETgene. The Drug

Panel lists generic names, drug types (approved or experimental),

number of candidate genes known to be targeted by the identified

drugs, highest ranked target gene name, and related diseases of the

identified drugs. The list of drugs is ordered by their highest

ranked target gene. TARGETgene is also customizable and can

generate the list of selected drugs based on the ranks of their

targets or drug type. In addition, users can explore more general

information on identified drugs of interest through several external

links.

Results

To illustrate the use of TARGETgene, we have applied it to two

examples: 1) identification of potential therapeutic targets from

thousands of differentially expressed genes identified by exon

array; 2) identification of driver mutated genes from sequencing

and copy number data.

Example 1: Identification of Potential Therapeutic Targets
from Differentially Expressed Genes

In this example, TARGETgene was applied in turn to each of

three cancer types: Her2-positive breast cancer, colon cancer, and

Lung Adenocarcinoma. Human Exon datasets in the Affymetrix

platform for the three cancer types were collected from the

National Center for Biotechnology Information Gene Expression

Omnibus (GEO) [21]. Subsequent data analyses were done using

TARGETgene: A Tool for Cancer Therapeutic Targets
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Partek Genomic Suite 6.3 (more detail in the section 3.1 of Text

S1). Finally, 5203, 5153 and 6203 differentially expressed genes

were identified in case studies of colon, breast, and lung cancer,

respectively. Differentially expressed genes in each cancer type

were all ranked based their hub score (weighted degree of

centrality) in a tumor-specific network, which was generated by

Figure 1. TARGETgene. A. The architecture design. B. The main graphical user interface.
doi:10.1371/journal.pone.0043305.g001
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mapping the differentially expressed genes in each cancer type to

the constructed gene functional network. The complete ranking

list of genes for each of the three cancer types can be obtained by

running TARGETgene using the candidate genes list stored in the

examples files (included in TARGETgene package) and selecting

the weighted degree centrality ranking option (section 3.1 of Text

S1 lists the top 10 highest ranked genes for each of the three

cancer types as shown in the Gene Panels of TARGETgene). The

results show that a number of important cancer genes for each

cancer type are ranked highly by TARGETgene, such as AKT1

(rank #1), SRC (rank #10), and ERBB2 (rank #25) in breast

cancer. In addition, TARGETgene also ranks several genes highly

(in the top 10%) that were recently identified as cancer-related

genes in each cancer type. For example, in breast cancer

ADAM12 (rank #153) and MAP3K6 (rank #205) were recently

reported to be associated with breast cancer oncogenesis [22,23].

Moreover, many genes that have never been identified in these

cancer types are also ranked highly. These genes could be subject

to further in vitro and in vivo study to evaluate their importance

these cancer types. Several of these also have been identified by

RNAi screens (as detailed in the following section).

Prediction Evaluations. The resulting ranked genes from

TARGETgene are also validated using gene functional annota-

tions and several benchmark gene sets, including the set of curated

cancer genes, the set of genes cited in cancer literature, and the set

of target genes detected by RNAi screens. Receiver Operating

Characteristic (ROC) Curves and AUC are used for these

benchmark evaluations. In each evaluation, the benchmark gene

sets are treated as positive instances while others genes are treated

as negative instance.

The curated cancer genes downloaded from the CancerGenes

database [24] are first used to evaluate if they are highly ranked by

TARGETgene. Figure 2A shows TARGETgene’s prediction

performance for each cancer type. The high AUC values of

TARGETgene’s prediction in each cancer type (all AUC.0.85)

indicate that most of the known cancer genes tend to be ranked

highly. In addition, genes that are cited in the literature for each

cancer type are also used for evaluation. Benchmark genes in each

cancer type can be determined based on different the citation

cutoff number. As the citation cutoff number used increases so do

the resulting TARGETgene AUC values (Figure 2B shows the

result of breast cancer; the results of the other two cases are shown

in the section 3.2.1 of Text S1), indicating that genes with more

citations also have a higher TARGETgene ranking. The results of

Spearman’s rank correlation in the three cancer types also shows

significant correlation between ranks generated by TARGETgene

and literature citation number (section 3.2.1 of Text S1). This

provides further evidence that genes highly ranked by TARGET-

gene are also cited more in the cancer literature; that is, they likely

play more important roles in these cancers, compared to lower

ranked genes.

High-throughput RNAi screens have recently been shown to be

a promising tool to discover new targets for the treatment of

several cancers [25]. Therefore, effective targets of each cancer

type detected by cell viability RNAi that were downloaded from

GenomeRNAi [26] are also applied to evaluate the performance

of the predictions from TARGETgene. The data sources of RNAi

screens used in this work are summarized in in the section 3.2.3 of

Text S1. The result is shown in Figure 2C. The high AUC in each

cancer type indicates that the most effected targets identified in the

genome-wide RNAi screens tend to be ranked highly by

TARGETgene. Some the RNAi target genes that are highly

ranked by TARGETgene have been shown to play an important

role in oncogenesis in each of the three cancer types, such as

AKT1 (#1) in Breast Cancer. Specifically, some of these target

genes have only recently been found to be associated with these

three cancer types. For example, in breast cancer, PIK3R2

(phosphoinositide-3-kinase, regulatory subunit 2 beta) and ECT2

(epithelial cell transforming sequence 2 oncogene) have a

TARGETgene rank of 37 and 272, and with a 3.31 and 4.94

fold change in gene expression of breast cancer tissues, respec-

tively. PIK3R2 has been shown to be functionally associated with

unphosphorylated PTEN and the PTEN-associated complex in

some HER2-amplified breast cancer cell lines [27]. ECT2 has

recently been reported to be involved with mechanisms for

activating RhoB after genotoxic stress, thereby facilitating cell

death after treatment with DNA damaging agents in Breast

Cancer [28]. Most interestingly, we also found that several novel

targets (i.e., no citation related to the specific cancer type based on

PubMed in Dec. 2010) detected by RNAi screens are also ranked

highly by TARGETgene. For examples in Breast Cancer, CASK

(calcium/calmodulin-dependent serine protein kinase) and CIT

(rho-interacting, serine/threonine kinase 21) are ranked 161 and

115, and with a 2.88 and 3.06 fold change in gene expression of

breast cancer tissues, respectively. CASK has been found to be

associated with tumorigenesis of esophagus [29]. CIT encodes a

serine/threonine-protein kinase that functions in cell division.

[30]. Such results provide support on cell line models for the

ability of TARGETgene to identify novel therapeutic targets in

cancers. This also suggests the possibility of combination of RNAi

and network-based screens adopted by TARGTgene for thera-

peutic target identification (more discussion in the Discussion

Section).

Gorilla [31], a gene ontology enrichment analysis tool, was

applied to identify enriched GO terms that appear densely at the

top of TARGETgene’s ranked gene lists for each of the three

cancer types. Many of identified GO process terms are known

cancer-related biological processes, such as regulation of cell

death, regulation of cell proliferation, regulation of cell migration.

Interestingly, several biological processes related to new hallmarks

of cancers [32] are also identified, such as DNA damage, oxidative

stress, evading immune surveillance, metabolic stress, mitotic

stress, and proteotoxic stress. These results indicate that genes

highly ranked by TARGETgene are involved in multiple cancer-

related biological processes and pathways. In addition, several

types of molecules, such as signaling kinases, receptor tyrosine

kinases, and transcription factors are often proposed as possible

molecular targets in cancers [33–36]. For example, protein

phosphorylation has proven to be an important driving force in

cellular signaling [37]. We also find that many kinase, receptor,

and transcription factor related GO function terms are enriched in

highly-ranked genes in TARGETgene (section 3.2.2 of Text S1).

More detail concerning these functional annotations can be found

in File S1.

Integration of Target Predictions and Drug-Target

Information. After mapping the information of drugs/com-

pounds and their targets to the ranked gene lists from

TARGETgene, the Drug Panel helps to identify compounds that

either have been approved or are currently in clinical trials for the

treatment of each of the three cancers. Other drugs and

compounds identified by TARGETgene that have not as yet

been used in clinical trials, have also shown anti-cancer effect and

could thus be considered as potential novel drug for these cancers.

Table 1 lists some of these drugs and compounds whose targeted

genes are overexpressed and highly ranked by TARGETgene in

Breast Cancer (results of Lung and Colon Cancer can be found in

the section 3.3 of Text S1). Trastuzumab and Lapatinib have been

approved for HER2 positive Breast cancer, and their main target

TARGETgene: A Tool for Cancer Therapeutic Targets
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ERRB2 is very highly ranked by TARGETgene (and up-

regulated). Several other drugs whose targets are highly ranked

by TARGETgene, such as Dasatinib, UCN-01, Celecoxib,

Flavopiridol, and Vorinostat, have already been in clinical trials

for the treatment of breast cancer. Moreover, other drug/

compounds have been shown to have anti-tumor effects and

could be considered as potential novel drugs for the treatment in

breast cancer, such as Alsterpaullone and Olomoucine. In

addition, two naturally occurring compounds, melatonin and

vitamin D (Calcidiol), are also identified by TARGETgene.

Melatonin, a naturally occurring compound found in organisms,

can regulate the circadian rhythms of several biological functions.

Recently, a clinical trial involving a total of 643 cancer patients

using melatonin found a reduced incidence of death [38]. A study

also showed that women with low melatonin levels have an

increased risk for breast cancer [39]. Vitamin D receptors have

been found in up to 80% of breast cancers, and vitamin D receptor

polymorphisms have been associated with differences in survival

[40,41,42]. Active vitamin D compounds (Calcidiol; Calcitriol)

also have been identified for their antiproliferative effects in breast

cancer cells [43,44], although the detail mechanisms are still

unclear. In summary, these results provide some further evidence

Figure 2. ROC curve performance evaluation for predictions in the example 1. True positive rate is denoted TPR and false positive rate is
denoted FPR in the Figure. A. Evaluation using curated cancer genes. B. Evaluation using genes cited by cited by cancer literature with different
citation number cutoff values of 1, 5 and 10 (only the case of breast cancer is shown). C. Evaluation using target genes detected by cell viability RNAi
screens.
doi:10.1371/journal.pone.0043305.g002
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that genes that are highly ranked by TARGETgene can be

potential therapeutic targets.

Example 2: Identification of Driver Mutated Genes in
Cancer

Large numbers of gene mutations have been discovered from

next generation sequencing [65]. A major challenge, however, is to

distinguish driver mutated genes that promote the growth of

cancer from passenger mutation genes that do not play a role in

cancer progression. Several attempts have been made to identified

recurrently mutated genes as drivers [66,67,68], but thus far these

efforts have been unable to detect many drivers unless they are

mutated at significantly high frequencies. For example, groups of

genes in a pathway that are mutual exclusively mutated. Different

combinations of mutations in the same important signaling or

regulatory pathway can all generate a significant perturbation and

cause cancer development, but these combinations will exclusively

appear in a given sample.

Mutations of hub genes in molecular networks are capable of

dyregulating the regular functions of many genes and their

pathways, due to the ability of hub genes to directly or indirectly

alter other components of the cell during their extensive

interactions. Accordingly, mutated hub genes may be drivers of

cancer progression. In this example, we applied TARGETgene to

identify possible driver mutated genes from the approximately 500

mutated genes in the genome of Glioblastoma Multiforme (GBM)

[69]. In order to identify those genes whose mutations will have

the most significant impacts on other gene, we choose all the genes

in the genome as seed genes and then TARGETgene ranked all

mutated genes based on their association with all the genes in the

genome. One set of genes in the identified core pathways of GBM

[68] was used for validation. We found that these genes in the

validation core pathways tend to be ranked highly by TARGET-

gene (AUC = 0.94; Figure 3). Several of these identified core

pathway genes are well known GBM genes, such as EGFR (#1),

TP53 (#22), and PTEN (#27). It is noteworthy, that two of genes

identified by TARGETgene are novel GBM genes (i.e., no GBM

literature citations were found), including, CCND2 (#66) and

SPRY2 (#68). This indicates highly ranked genes in the

TARGETgene prediction may be oncogenic drivers or potential

therapeutic targets. In the Drug Panel, TARGETgene also lists

some approved drugs that target on those highly ranked genes

identified by TARGETgene, some of which have been used for

the treatment of GBM or are now in GBM clinical trials (results

not shown). All the results can be regenerated by using the

Example2 Candidate Genes file on the TARGETgene package

and selecting association with all genes in the genome.

Discussion

Identification of Potential Therapeutic Targets
Based on the results in the two examples presented, most well

studied cancer genes, including those that have shown clinical

benefit (e.g., ERBB2 and TOP2 in Table 1), are highly ranked in

TARGETgene’s predictions in each of the three cancer types.

Most notably, TARGETgene also identified several highly ranked

genes that are novel in each of the three cancer types. While most

new approvals of drugs for target cancer therapies are directed

against a few existing targets, such as EGFR, ABL1, only a small

number of compounds are in development against novel targets

[25]. This indicates that many potential targets remain undiscov-

ered or undrugged. Previous approaches used to identify and

validate novel targets in diseases are limited because of high cost,

low throughput and time involved [25]. The gene network-based

approach as implanted in TARGETgene is able to effectively and

comprehensively identify important cancer therapeutic targets.

Most importantly, the biological datasets used to construct the

gene network are all in the public domains. In addition, although

some studies have estimated the size of the ‘‘druggable’’ human

Table 1. Selected Drugs Whose Targets Are Highly-Ranked (the case of Breast Cancer).

Drugs/Compounds Target Genes (Their Ranks and Fold Changes in Cancer) Literatures Of Breast Cancer Treatment

Dasatinib (E)* SRC(#10; 2.623) [45],[46]

Celecoxib (A)* PDPK1 (#14; 2.917) [47]

Flavopiridol (E)* CDK5 (#41; 4.640); CDC2 (#108; 4.382); CDK4 (#50; 2.092) [48].[49]

Staurosporine(UCN-01) (E)* PDPK1 (#14; 2.917); MAPKAPK2 (#62; 2.138); CSK (#19; 3.724); GSK3B
(#84; 2.130)

[50]

Alsterpaullone (E) CDK5 (#41; 4.640); GSK3B (#84; 2.130); CDC2 (#108; 4.382) [51]

Olomoucine (E) CDK5 (#41; 4.640); CDC2 (#108; 4.382) [52]

Trastuzumab (A)*** ERBB2 (#25; 46.856) [53],[54]

Lapatinib (A)*** ERBB2 (#25; 46.856) [55],[56]

Dexrazoxane (A)*** TOP2A(#302; 10.965) [57]

Lithium (A) GSK3B (#84) [58]

Melatonin (A) CALR(#651) [59]

Calcidiol (A) VDR (#241) [44]

Vorinostat (A)* HDAC3 (#307; 2.336); HDAC1 (#497; 2.286); HDAC2 (#564; 2.520) [60]

Geldanamycin (17-AAG) (E)* HSP90B1 (#258; 1.779); HSP90AA1 (#275; 1.920) [61],[62]

Arsenic trioxide (A)* AKT1 (#1; 4.566); CCND1 (#418; 3.663) [63],[64]

Note: 1.Approved drugs are denoted as ‘A’.
2.Experimental compounds are denoted as ‘E’.
3.Drugs have been approved for the treatment of Breast Cancer are marked with ***.
4.Drugs in clinical trials for Breast Cancer are marked with *.
doi:10.1371/journal.pone.0043305.t001
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genome to be around 10,20% of human proteome (i.e. the

number of the possible protein targets for small-molecule drug

design in medicinal chemistry) [70,71], developing RNAi-based

therapies may allow for targeted therapy of virtually any gene [72].

Thus, the targets (up-regulated or mutated) identified by the gene

network-based approach in TARGETgene, may all be potential

therapeutic targets using RNAi-based therapy. However, most of

the targets predicted by TARGETgene still need to be validated in

non-clinical models and ultimately in patients.

In the two examples presented, hub genes are identified as

important cancer-related genes or potential therapeutic targets

using a weighted degree centrality measure. Although the

predictions in the three cancer types were satisfactorily validated

in several ways, predictions based on this method are expected to

be biased toward well-connected genes in the network. For

example, some bottleneck hub genes [73] with only a few direct

connections to other nodes, but that act as key connectors in the

network, may not be identified using the weighted degree

centrality measure. The weighted eigenvector centrality measure

which can account for the global importance of a gene in the

constructed network is an approach for addressing this problem.

The constructed gene network used in this study, however,

contains not only direct molecular interaction information but also

broader (undirected) gene-gene functional relationships, thus

reducing the aforementioned selection bias problem when using

the weighted degree centrality. We note that comparable

prediction performance between the weighted degree centrality

and the weighted eigenvector centrality measure, supporting this

point (results not shown). However, genes that have not been well-

studied to date but may be important in cancer progression will

not be identified by the TARGETgene, because little is known

about their function. This is a current limitation of TARGETgene

for target identification, that may be ameliorated as more genomic

and proteomic data are generated and integrated to construct a

more complete gene network to be included in future versions of

TARGETgene.

Combination of Predictions of TARGETgene and RNAi
Screens

RNAi screens have the ability to identify critical genes that

control cancer-related (or disease-related) phenotypes without

using any prior biological information. RNAi screens thus can be

expected to be a powerful tool for identifying and validating novel

targets in the drug discovery process [25]. The gene network-

based approach adopted by TARGETgene, however, does not

rank some of the targets identified by RNAi screens highly. There

are several reasons for the difference between the predicted target

using RNAi and the gene network-based approach in TARGET-

gene. The use of RNAi screens has several significant limitations.

First, RNAi screens can only be conducted in cell lines, thus the

significance of targets must be further validated in clinical trials.

Second, RNAi reagents have off-target effects, which results in the

inhibition of genes that are not the intended targets to result in the

specific phenotype [25]. Although it is possible to reduce the

impact of such effects using extensive validations, only a few

targets are finalized and thus generate many false negatives (i.e.,

many genes that should be targets but are not detected). In

contrast, the gene network-based screening in TARGETgene can

be used to identify potential therapeutic targets directly using

patient data. The approach can also rank all the candidate genes

in a cancer based on their functional associations with other genes,

and thus may not generate as many false negatives as RNAi

screens. An additional advantage of the gene network-based screen

is that the pathway information provided in the constructed gene

network can be used to interpret the biological processes in which

the detected targets are involved, through the inspection of

biological roles of related genes. More specifically, the biological

roles of groups of functionally related genes of the detected targets

can be interpreted by ‘‘Gene Enrichment analysis’’, which is able

to identify major biological processes or pathways associate with

these genes. However, it is necessary to imbed prior biological

information in the gene network-based approach, which are

enriched but still far from complete and may contain some extent

of errors.

In principle, RNAi screens could be combined with the gene

network-based approach in TARGETgene to arrive at a more

refined list of accurate cancer targets without the need for

extensive validation of RNAi screens, and with lower false negative

rates. The abundant biological information embed in the

constructed gene network can provide biological interpretation

for the novel targets through their connected genes. In addition, by

taking advantage of the gene network-based approach that can

identify potential targets using clinical data, one could provide

clinical relevance to the novel targets detected by RNAi screens.

The gene network-based screen in combination with RNAi screens

could be persuasive and provide a complementary mechanism for

the identification of therapeutic targets, and thus accelerate drug

discovery process.

Application to Drug Discovery
While the primary purpose of TARGETgene is to identify

potential therapeutic targets using integration of heterogeneous

biological data, TARGETgene also lists existing drugs and other

compounds that may have possible action on the identified targets,

as illustrated in the examples presented. These results provide

some direct confirmation of abilities of TARGETgene to identify

potential drugs. However, these identified drugs may not be

effective in the treatment of the indicated cancer for a number of

reasons, including: 1). the drug binding affinities are target

dependent; 2) the mechanisms of actions of some drugs are

unclear; 3). most drugs act against multiple targets, of which some

Figure 3. ROC curve performance evaluation for predictions in
the example 2. TARGETgene prediction performance is evaluated by
genes in the identified core pathways.
doi:10.1371/journal.pone.0043305.g003
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are up-regulated while others are down-regulated in cancers.

Therefore, it is difficult to evaluate any possible therapeutic effect

of the identified drugs in the predictions.

The results presented in these two applications, however,

suggest that TARGETgene could be a tool for initial screening of

potential new drugs for further evaluation. Novel drugs whose

target genes are highly ranked in TARGETgene’s prediction could

be considered as potential new drugs for these cancers. These

drugs can then be further validated using preclinical testing, such

as testing in cell lines or animal models. Most importantly, if

targets of some FDA-approved drugs or compounds are highly

ranked in the predictions, it is possible to reuse these drugs in the

treatment of other cancers or diseases. The results for each cancer

type also identify several naturally occurring compounds. Two

examples are melatonin and vitamin D whose targets are highly

ranked in the case of breast cancer (Table 1).

Conclusions

There is a vast and diverse amount of public genomic and

proteomic resources in the life sciences that may aid in the

understanding of disease mechanisms and in the drug discovery

process. TARGETgene integrates these resources and provides a

platform that enables people to efficiently identify mutation

drivers, possible therapeutic targets, and drug candidates in

cancer. TARGETgene can rapidly extract gene functional

interactions from a precompiled database that is stored as a

MATLAB MAT-file without the need to interrogate remote SQL

databases. Millions of interactions of thousands of candidate genes

can be extracted from the gene network within minutes. While

TARGETgene is currently based on the gene network reported in

[11], it can be easily extended to allow use of other developed gene

networks as options.

One study successfully applied a single gene network to

accurately predict tissue-specific phenotypic effects of gene

perturbation in Caenorhabditis elegans [9]. In this work, the two

examples presented above using TARGETgene further support

this possibility. This suggests that the constructed gene network

[11] adopted by TARGETgene not only contains critical pathway

information, but also can be used to identifying potential

therapeutic targets and driver mutations in diverse types of

cancer. In addition, existing drugs and other compounds that may

have possible action on the identified targets are also provided by

TARGETgene. Of course, it is difficult to evaluate any possible

therapeutic effect of the identified drugs in the prediction for a

number of reasons. However, TARGETgene can be viewed as

initial drug screening tool that identifies compounds for be further

evaluation. Finally, TARGETgene may also have applications in

drug repurposing by identifying compounds that are in use for the

treatment of other diseases.
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