	PETTENKOFER SCHOOL OF PUBLIC HEALTH – PSPH	
LUDWIG-	MEDIZINISCHE FAKULTÄT	
MAXIMILIANS-	INSTITUT FÜR MEDIZINISCHE INFORMATIONSVERARBEITUNG,	
UNIVERSITÄT	BIOMETRIE UND EPIDEMIOLOGIE – IBE	
MÜNCHEN	MASTER- UND PHD-PROGRAMME	

Epidemiology of Hepatitis E in Bavaria Germany

K.Hriskova^{1,2,3} D.Marosevic¹ K.Katz¹ A.Belting¹ J.J.Wenzel⁴ A.Carl⁴

¹ Bavarian Public Health and Food Safety Authority (LGL), ² Institute for Medical Information Processing, Biometry and Epidemiology - IBE, LMU Munich, Munich, Germany, ³ Pettenkofer School of Public Health, Munich, Germany, ⁴ National Consultant Laboratory for HAV and HEV, Institute of Clinical Microbiology and Hygiene, University Medical Centre Regensburg

Introduction

- Hepatitis E virus (HEV) is a non-enveloped, single-stranded RNA virus
- Genotype 3 is the most widespread genotype in Germany
- The prevalence of antibodies against HEV in Germany is 16,8%
- Genotype 3 has a zoonotic character and has been detected in several animal species (e.g. pigs, wild boars, deer and rabbits) and humans

Objectives

- Describe the population diagnosed with HEV in Bavaria
- Identify the most common subgenotypes of HEV circulating in Bavaria
- Identify the risk factors associated with transmission of HEV genotype 3

Methods

- Descriptive analysis for Bavarian's HEV cases
- Sequencing to subgenotypes
- Univariable analysis and Logistic Regression

Results

• Women (n=66) mean age 46 years Gender (20-74)and age • Men (n=69) mean age 47,5 years (20-85)

• Cases with symptoms (n=79/59%)• No significant difference in the Symptoms

Risk factors II

Risk factors	$\begin{array}{c} \text{Cases} \\ (n = 135) \end{array}$				Multivariable Analysis	
TUSK Idetors						
Variable	Yes	%	Yes	%	ORs	95% CI
Sausages consumption	133	98,5%	4.037	89,7%	9,6**	1,3 - 70,1
Fish consumption	123	91,8%	3.811	84,8%	$2,\!2^{**}$	1,1 - 4,4
Cat possession	39	31,2%	676	$15,\!4\%$	$1,\!9^{***}$	1,3 - 3,0
Raw vegetable	121	90,3%	4.245	95,3%	$0,4^{**}$	0,2 - 0,8
consumption		90,370	4.240	90,070	0,4	0,2 - 0,8
Meat consumption	131	$97,\!0\%$	4.326	96,2%	NA	
Ham consumption	120	$89,\!6\%$	3.828	85,0%	NA	
Dog possession	20	$16,\!1\%$	608	13,9%	NA	
able 1: Risk factors. Comp	arison (of the HI	EV cases an	d the DEGS	1 population ((NA - the effect
f the variable is not signific	ant; **	<i>p</i> -value	< 0,05; ***	ć p-value < 0	0,01)	

Conclusion

Data Collection HEV cases

All laboratory	Stool and serum				
confirmed infec-	samples $(n=145),$				
tions reported	food samples sent				
to LGL $(n=558)$	to $LGL(n=6)$				
HEV patients filled	Patients with not				
out the questionnaire	\rightarrow fully completed				
(n=167)	questionnaire $(n=5)$				
Patients with com-	Patients traveled				
pleted question-	\rightarrow to non-genotype-3				
naire $(n=162)$	endemic coun-				
	tries $(n=27)$				
Number of ques-					
tionnaires available					
for descriptive					
analysis $(n=135)$					

Figure 1: Recruitment of hepatitis E patients

presence of symptoms between women and men (Chi-square-test)

Subgenotyping

- Stool and serum samples sequenced (n=145)
- Food samples sequenced (n=6). All were negative
- In most of the stool samples the HEV-RNA was not detectable (n=122), because collection of samples was delayed

Figure 2: Subgenotype distribution

Risk factors I

Figure 3: Summary of known and suspected transmission routes of HEV genotype 3 in the literature

- Pigs, wild boar and deer have been identified as reservoir of HEV in Germany
- Runoff from animal manure and faeces, containing HEV, could contaminate irrigation or coastal waters and these could contaminate shellfish and possibly fish
- In our study fish was identified as a new risk factor
- Dogs and cats have been found seropositive for HEV in Germany

Data Collection Healthy Population (DEGS1)

Healthy population[1] A dataset from RKI (DEGS1) was used to compare food habits of Bavarian HEV cases in 2017 with the general healthy population participating in the RKI survey. Inclusion criteria:

- Food Frequency Questionnaire (FFQ) was filled out
- Living in western federal states
- No previous diagnosis of Hepatitis

Positively associated with hepatitis E: • Consumption of sausages (e.g. salami, liver sausages)

• Consumption of fish (e.g. pollack, trout) • Owning a cat

Protective factor for hepatitis E:

• Consumption of raw vegetables

No association with hepatitis E:

• Consumption of meat like pork, beef and wild meat

• Consumption of ham

• Owning a dog

• In our study cat ownership was positively associated with HEV

• Furthermore, women with cat ownership have a higher risk than men owning a cat

• It is tempting to hypothesize that women living in a shared household are more likely to care for their pets (feeding and cleaning) and are therefore more exposed

References

[1] Robert-Koch-Institute.

German health interview and examination survey for adults (degs1). Robert Koch Institute, Department of Epidemiology and Health Monitoring, 2015.

Acknowledgements

This work was supported by the Robert Koch Institute and the German Federal Ministry of Health [Grant Number 1369–386 to J. Wenzel].

* This work was submitted to "Food and Environmental Virology" and is currently under consideration.

PETTENKOFER SCHOOL OF PUBLIC HEALTH